
Lectura de planos en Ingeniería Mecánica y GD&T

Actualizado conforme a ASME Y14.5 - 2009

Prohibida la reproducción parcial o total de este material sin el consentimiento por escrito del autor.

Derechos Reservados 2016

Mezquites 60-38 Fraccionamiento Mezquites, Querétaro, Qro. CP 76180; tel (442)455-2596

Descripción del Curso

- Este curso de Interpretación de Planos de Ingeniería y Dimensionamiento y Tolerancias Geométricas (GD&T) está dirigido a las personas que tendrán sus primeros acercamientos o que ya han tenido contacto con este tipo de información técnica como son: Operadores de maquinado, ensambladores, mecánicos de piso y ajustadores, ayudantes de taller, mecánicos de mantenimiento, programadores de producción, etc.
- Este curso también se recomienda para ingenieros en etapa de introducción a la planta, inspectores de calidad y a todos los que tengan relación con los procesos de manufactura de la planta.

Objetivo

Al término del curso, el participante habrá adquirido los conocimientos y habilidades requeridos para leer los dibujos de ingeniería. Todos los elementos de los dibujos de ingeniería están descritos en su contenido, incluyendo tipos de líneas, vistas, dibujo de elementos mecánicos, ajustes ISO, dimensiones y tolerancias geométricas.

Duración

La duración del presente curso es de 24 horas.

Tabla de Contenido

DESCRIPCIÓN DEL CURSO	3
Objetivo	3
DURACIÓN	3
I. INTRODUCCIÓN	9
EJERCICIO DE INTERPRETACIÓN	9
CICLO DE VIDA DE LOS DIBUJOS DE INGENIERÍA	10
II. TIPOS DE LÍNEAS Y SU EMPLEO	13
EJEMPLOS DE APLICACIONES DE TIPOS DE LÍNEAS	13
EJERCICIO DE TIPOS DE LÍNEAS	
EJERCICIO DE TIPOS DE LÍNEAS EN DIBUJOS DEL CLIENTE	
III. PROYECCIONES ORTOGONALES	17
SISTEMA EUROPEO Y SISTEMA AMERICANO DE PROYECCIÓ	
EJEMPLO DE PROYECCIONES ORTOGONALES O VISTAS EN S	
EJEMPLO DE PROYECCIONES ORTOGONALES O VISTAS EN S	
TÉCNICA DE VISUALIZACIÓN DE PROYECCIONES ORTOGONA	
EJERCICIOS DE PROYECCIONES ORTOGONALES O VISTAS	
IV. VISTAS AUXILIARES	25
EJERCICIOS DE VISTAS AUXILIARES:	26
V. CORTES Y SECCIONES	29
EJERCICIO # 1 SOBRE CORTES Y SECCIONES	31
MEDIOS CORTES	
CORTE ESCALONADO O QUEBRADO	
CORTE DE NERVIOS	
CORTE CON UN PATRÓN DE CARACTERÍSTICAS DISTRIBUIDA	
CORTES PARCIALES EJERCICIO # 2 SOBRE CORTES Y SECCIONES	
ROSCAS	
NOMENCLATURA DE ROSCAS PARA TORNILLOS:	
EJERCICIOS SOBRE IDENTIFICACIÓN DE ROSCAS:	
	47
RECOMENDACIONES PARA ACOTAR DIBUJOS	
EJERCICIOS DE ACOTACIÓN.	
TOLERANCIAS DIMENSIONALES	
SISTEMA ISO DE TOLERANCIAS Y AJUSTES	
SISTEMA DE EJE UNICO.	

SISTEMA DE AGUJERO ÚNICO.	
ESCALA DE DIBUJO. EJERCICIOS DE DIBUJO EN ESCALA.	
	32
VIII. CONCEPTOS SOBRE DIMENSIONADO Y APLICACIÓN DE TOLERANCIAS	
GEOMÉTRICAS (GD&T)	55
DEFINICIONES	55
DIMENSIÓN	
TOLERANCIA	55
TOLERANCIA GEOMÉTRICA	
DIMENSIÓN DE REFERENCIA:	56
Característica	56
CARACTERÍSTICA DE TAMAÑO REGULAR	56
CARACTERÍSTICA DE TAMAÑO IRREGULAR	56
TAMAÑO REAL LOCAL	
TAMAÑO COMERCIAL (STOCK SIZE)	56
Tamaño Nominal	
Datum	
CARACTERÍSTICA DATUM	
SÍMBOLO DE CARACTERÍSTICA DATUM.	
Propósito	64
PUNTOS DE DATUMS ESPECÍFICOS	
LINEAS DE DATUMS ESPECÍFICOS	
AREAS DE DATUMS ESPECÍFICOS	
DATUMS ESPECÍFICOS MÓVILES	
SÍMBOLOS DE CONDICIÓN Y FRONTERA DE MATERIAL	
CONDICIÓN DE MATERIAL MÁXIMO (MMC)	
CONDICIÓN DE MATERIAL MÍNIMO (LMC)	
SIN IMPORTAR EL TAMAÑO DE LA CARACTERÍSTICA (RFS)	
FRONTERA DE MATERIAL MÁXIMO (MMB)	
SIN IMPORTAR LA FRONTERA DE MATERIAL (RMB)	
DIMENSIONES BÁSICAS	
ACTIVIDAD DE APRENDIZAIEREF. ASME Y14.5 - 2009	
REGLAS DE GD&1REF. ASME Y 14.5 - 2009	
Variaciones de tamaño	
REGLA # 2	
TOLERANCIAS GEOMÉTRICAS	
TOLERANCIA DE FORMA	
APLICACIÓN	
RECTITUD.	
DEFINICIÓN	
ESPECIFICACIÓN DE RECTITUD DE UN ELEMENTO DE SUPERFICIE CIRCULAR - RFS	
ESPECIFICACIÓN DE RECTITUD DE UN EJE - RFS	
ESPECIFICACIÓN DE RECTITUD DE UN EJE – MMC	
ESPECIFICACIÓN DE RECTITUD DE UNA SUPERFICIE NO CIRCULAR	
PRINCIPIOS DE MEDICIÓN DE RECTITUD	
PLANITUD	
DEFINICIÓN	
ESPECIFICACIÓN DE PLANITUD DE UNA SUPERFICIE	
ESPECIFICACIÓN DE PLANITUD DEL PLANO MEDIO DERIVADO - RFS	92

ESPECIFICACIÓN DE PLANITUD DEL PLANO MEDIO DERIVADO - MMC	
PRINCIPIOS DE MEDICIÓN DE PLANITUD	
CIRCULARIDAD	
DEFINICIÓN	95
ESPECIFICACIÓN DE CIRCULARIDAD PARA UN CILINDRO O UN CONO	
ESPECIFICACIÓN DE CIRCULARIDAD PARA PARTES NO RIGIDAS	
PRINCIPIOS DE MEDICIÓN DE CIRCULARIDAD	
CILINDRIÇIDAD	
DEFINICIÓN	
ESPECIFICACIÓN DE CILINDRICIDAD PARA UN CILINDRO	
TOLERANÇIAS DE PERFIL	
APLICACIÓN	
PERFIL DE UNA LÍNEA	
DEFINICIÓN	
ESPECIFICANDO EL PERFIL DE UNA LÍNEA – ZONA DE TOLERANCIA BILATERAL	
ESPECIFICANDO PERFIL DE LÍNEA - ZONA DE TOLERANCIA UNILATERAL	
ESPECIFICANDO PERFIL DE LÍNEA – TODO EL CONTORNO	
ESPECIFICANDO PERFIL DE LÍNEA Y CONTROL DE TAMAÑO	
B. PERFIL DE UNA SUPERFICIE	
DEFINICIÓN	
ESPECIFICANDO UNA ZONA DE TOLERANCIA PARA EL PERFIL DE UNA SUPERFICIE	
ESPECIFICANDO PERFIL DE UNA SUPERFICIE - CARACTERÍSTICA DE TAMAÑO IRREGULAR	
ESPECIFICANDO PERFIL DE UNA SUPERFICIE - CARACTERÍSTICA CÓNICA	
ESPECIFICANDO PERFIL DE UNA SUPERFICIE - TODO EL CONTORNO	
ESPECIFICANDO PERFIL DE UNA SUPERFICIE - TODA LA CUBIERTA	
ESPECIFICANDO PERFIL DE UNA SUPERFICIE - ALINEAMIENTO DE SUPERFICIES COPLANA	
ESPECIFICANDO PERFIL DE UNA SUPERFICIE - ALINEAMIENTO DE SUPERFICIES MULTIPLI	
ACUMULACION DE TOLERANCIAS USANDO TOLERANCIAS DE PERFIL	
PRINCIPIO DE MEDICIÓN DE TOLERANCIAS DE PERFIL	
ACTIVIDAD DE APRENDIZAJE - TOLERANCIAS DE PERFIL	
TOLERANCIA DE ORIENTACIÓN	
APLICACIÓN	
PERPENDICULARIDAD	
DEFINICIÓN	
ESPECIFICACIÓN DE PERPENDICULARIDAD PARA UNA SUPERFICIE PLANA	
ESPECIFICACIÓN DE PERPENDICULARIDAD PARA ELEMENTOS DE LINEA DE UNA SUPERF	
	128
ESPECIFICACIÓN DE PERPENDICULARIDAD PARA ELEMENTOS RADIALES DE UNA SUPERI	
ESPECIFICACIÓN DE PERPENDICULARIDAD PARA UN PLANO CENTRAL	
ESPECIFICACIÓN DE PERPENDICULARIDAD PARA UN EJE - RFS	
ESPECIFICACIÓN DE PERPENDICULARIDAD PARA UN EJE DE UN PERNO - RFS	
ESPECIFICACIÓN DE PERPENDICULARIDAD PARA UN EJE DE UN PERNO - MMC	
ESPECIFICACIÓN DE PERPENDICULARIDAD PARA UN EJE – CON TOLERANCIA CERO EN MI	
ANGULARIDAD	
DEFINICIÓNESPECIFICANDO ANGULARIDAD PARA UNA SUPERFICIE PLANA	
ESPECIFICANDO ANGULARIDAD PARA UNA SUPERFICIE PLANA ESPECIFICANDO ANGULARIDAD PARA UNA SUPERFICIE RELACIONADA A DATUMS	136
PRIMARIOS, Y SECUNDARIOS	127
ESPECIFICANDO ANGULARIDAD PARA UN EJE - RFS	120
LSTECHTCANDU ANUULARIDAD FARA UN EJE - KF3	138

ESPECIFICANDO ANGULARIDAD PARA UNA EJE RELATIVO A DATUMS PRIMARIO Y	
SECUNDARIO - RFS	139
PARALELISMO	
DEFINICIÓN	
ESPECIFICANDO PARALELISMO PARA UNA SUPERFICIE PLANA	141
ESPECIFICANDO PARALELISMO PARA ELEMENTOS DE LINEA DE UNA SUPERFICIE	
RELACIONADA A DATUMS PRIMARIO Y SECUNDARIO	142
ESPECIFICANDO PARALELISMO PARA UN EJE RELACIONADO A UN DATUM PRIMARIO	143
ESPECIFICANDO PARALELISMO PARA UN EJE A MMC	144
ACTIVIDAD DE APRENDIZAJE – TOLERANCIAS DE ORIENTACIÓN	
TOLERANCIAS DE LOCALIZACIÓN	149
APLICACIÓN	
POSICIÓN	
DEFINICIÓN	
REQUERIMIENTOS	151
ESPECIFICACIÓN DE POSICIÓN PARA UN ORIFICIO – METODO DE TOLERANCIA Y	
DIMENSIONAMIENTO POR COORDENADAS	152
ESPECIFICANDO POSICIÓN PARA UN ORIFICIO - MÉTODO TOLERANCIA Y DIMENSIONAMI	ENTO
GEOMÉTRICO	153
ESPECIFICANDO POSICIÓN - ANÁLISIS DE CARACTERÍSTICA DE TAMAÑO Y ZONA DE	
TOLERANCIA (MMC)	154
ESPECIFICANDO POSICIÓN - PARA TOLERANCIA BIDIRECCIONAL - MÉTODO DE COORDEN	
	155
ESPECIFICANDO POSICIÓN - PARA ORIFICIOS ALARGADOS-MÉTODO DE FRONTERA	
ESTO EN EL DIBUJO.	156
ESPECIFICANDO POSICIÓN - PARA UNA PLANTILLA DE ORIFICIOS POR TOLERANCIA	
POSICIONAL COMPUESTA	157
ESPECIFICANDO POSICIÓN - PARA UNA PLANTILLA DE ORIFICIOS POR TOLERANCIA	
POSICIONAL COMPUESTA	
ESPECIFICANDO POSICIÓN - ZONA DE TOLERANCIA PROYECTADA	
ESPECIFICANDO POSICIÓN - ZONA DE TOLERANCIA PROYECTADA	
ESPECIFICANDO POSICIÓN - CALCULO DE LA TOLERANCIA DE UN TORNILLO FLOTANTE	
ESPECIFICANDO POSICIÓN - CALCULO DE LA TOLERANCIA DE UN TORNILLO FIJO	
CÁLCULO DE ACUMULACIÓN DE TOLERANCIAS USANDO TOLERANCIAS DE POSICIÓN - M	
ACTIVIDAD DEL EGRUDIANTE, TOUEDANGIA O DEL OCALIZA CIÁN	163
ACTIVIDAD DEL ESTUDIANTE – TOLERANCIAS DE LOCALIZACIÓN	
ESPECIFICANDO POSICIÓN PARA AGUJEROS CON CAJA - MISMA TOLERANCIA Y DATUMS	
REFERENCIAESPECIFICANDO POSICIÓN PARA AGUJEROS CON CAJA - DIFERENTE TOLERANCIA, MISMO	103
· ·	
DATUMS DE REFERENCIAESPECIFICANDO POSICIÓN PARA AGUJEROS CON CAJA - DIFERENTE TOLERANCIA Y DATU	
DE REFERENCIAACTIVIDAD DE APRENDIZAJE – TOLERANCIAS DE LOCALIZACIÓN	107
ESPECIFICANDO POSICIÓN PARA CONTROL DE SIMETRIA - RFS	
ESPECIFICANDO POSICIÓN PARA CONTROL DE SIMETRIA - RFS ESPECIFICANDO POSICIÓN PARA CONTROL DE SIMETRIA - MMC	
ESPECIFICANDO POSICIÓN PARA CONTROL DE SIMETRIA - MIMC ESPECIFICANDO POSICIÓN PARA ALINEAMIENTO COAXIAL DE AGUJEROS	
ESPECIFICANDO POSICIÓN PARA ALINEAMIENTO COAXIAL DE AGUJEROS	
ESPECIFICANDO POSICIÓN PARA COAXIALIDAD DE EJES - RES ESPECIFICANDO POSICIÓN PARA COAXIALIDAD DE EJES - MMC	
ESPECIFICANDO POSICIÓN PARA COAXIALIDAD DE EJES - MINIC	
CONCENTRICIDAD	
DEFINICIÓN:	
ESPECIFICANDO CONCENTRICIDAD PARA EJES COAXIALES	
LDI ECH ICANDU CUNCENTRICIDAD I ARA EJES CUAAIALES	1 / (

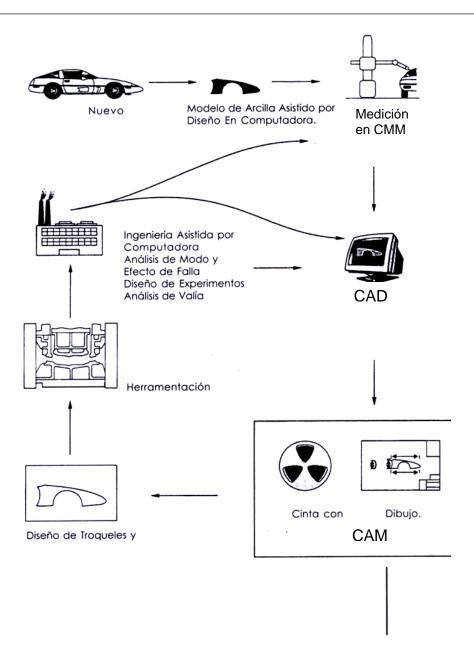
SIMETRIA	177
DEFINICIÓN:	
ESPECIFICANDO SIMETRIA PARA SUPERFICIES PLANAS	178
ACTIVIDAD DE APRENDIZAJE – TOLERANCIAS DE LOCALIZACIÓN	179
TOLERANCIAS DE CABECEO	
CABECEO CIRCULAR	182
DEFINICION	
ESPECIFICANDO CABECEO CIRCULAR RELATIVO A UN EJE DATUM	183
ESPECIFICANDO CABECEO CIRCULAR RELATIVO DOS DATUMS COAXIALES	184
ESPECIFICANDO CABECEO CIRCULAR PARA UNA SUPERFICIE PERPENDICULAR RESPECTO	A
UN EJE DATUM.	185
CABECEO TOTAL	186
DEFINICION	186
ESPECIFICANDO CABECEO TOTAL RELATIVO A UN EJE DATUM	187
ESPECIFICANDO CABECEO (CIRCULAR Y TOTAL) RELATIVO A DATUMS DE SUPERFICIE Y U	N
EJE	188
ACTIVIDAD DE APRENDIZAJE - TOLERANCIAS DE CABECEO	189

I. Introducción

El dibujo es el tipo de expresión escrita más antiguo de la humanidad ya que es universalmente comprendido. Dentro del ambiente técnico industrial el dibujo es el lenguaje comúnmente empleado para la comunicación de ideas.

Para todo aquel involucrado en un trabajo industrial, es necesario conocer el lenguaje del dibujo técnico de ingeniería, aún si se encuentra trabajando en forma indirectamente relacionado con aspectos técnicos, es importante conocer este lenguaje gráfico, lo cual le permitirá interpretar correctamente los planos o dibujos de ingeniería.

Se ha dicho que "un dibujo vale más que mil palabras". Gracias a este lenguaje, los ingenieros pueden transferir sus ideas al resto de los trabajadores de la industria en forma exacta y precisa.

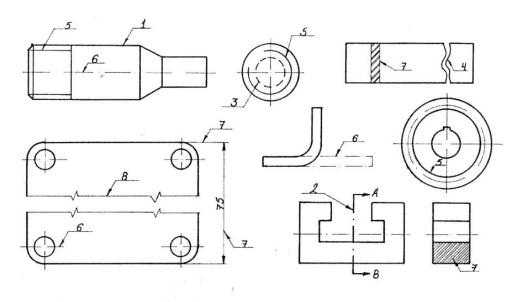

Este lenguaje, tiene sus propias reglas. Así habremos de aprender cómo se representan los diversos elementos mecánicos tales como engranes, resortes, ejes, etcétera; cómo se pueden definir las dimensiones de las piezas; que significado tienen los diferentes tipos de líneas empleados en un dibujo, etc.

Ejercicio de interpretación

En el dibujo de la derecha, se muestran tres objetos. Descríbalos en las líneas inferiores, sin utilizar sus nombres:

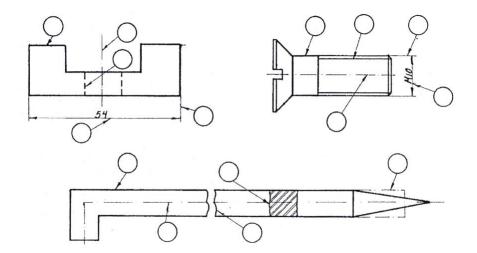
	de Planos y GD&1		
· ·	sidera la descripción anterior suficiente para que una persona ajena que jamás		
ha vis	ha visto los objetos de la foto, los pueda fabricar, Por qué?		
Recu	erde que:		
٥	Las palabras difícilmente transmiten la idea de la forma de la pieza		
	La pieza no siempre puede servir de modelo		
	Una fotografía no aclara los detalles dimensionales de la pieza		
	Sólo a través de un dibujo de ingeniería se pueden transmitir las ideas de		
	forma, función y tamaño de la pieza.		
(Ciclo de Vida de los Dibujos de Ingeniería		
donde se dará may construye la calidad por comp herramen –manufa	de Vida de los Dibujos de Ingeniería, comienza con el diseño conceptual e definen las diferentes opciones y se escoge la mejor idea que se piensa le vor satisfacción al cliente o a la necesidad latente del nuevo producto. Se en prototipos para probar las características críticas del diseño y críticas para d del producto; Se hacen los dibujos de ingeniería, usando diseño auxiliado outadora (CAD); se emplea la información de la computadora para diseñar ntales y troqueles y alimentar los códigos de programa de las máquinas CNC ctura auxiliada por computadora (CAM); finalmente, se construye el producto o las indicaciones de la información contenida en los planos.		
	Ciclo de vida de los dibujos de ingeniería		

Página Intencionalmente en blanco

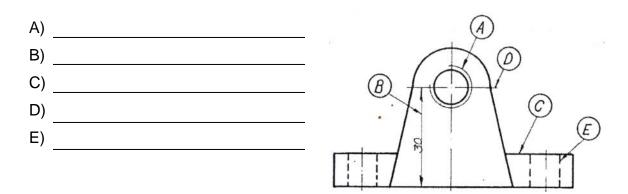

II. Tipos de líneas y su empleo

En la interpretación correcta de los dibujos de ingeniería, es necesario distinguir diferentes componentes, usar acotaciones para definir tamaños, hacer cortes imaginarios para ver detalles constructivos en el interior de algún subensamble, etcétera. Todo ello requiere que utilicemos diferentes tipos de líneas para dar mayor realce y claridad al significado de nuestros dibujos. Existe un acuerdo en base a normas internacionales para definir los diferentes tipos de líneas que se deben utilizar en los dibujos técnicos. Estos tipos de líneas, son los siguientes:

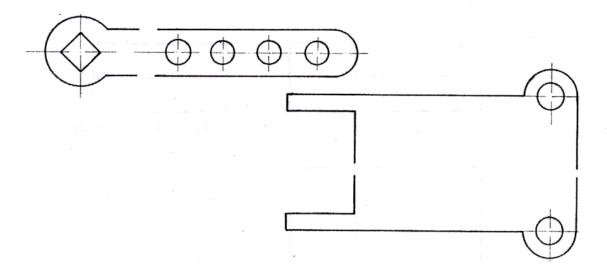
Tipo de línea	Ejemplo del tipo de línea	Aplicación
ESA	1. Continua	Contornos visibles
GRUESA	2. Mixta	Cortes y secciones
	3. Punteada	Contornos no visibles
MEDIA	4. Irregular	Rupturas cortas
Σ	5. Continua	Diámetros internos de roscas; engranes simplificados
	6. Mixta	Líneas de centros y ejes de simetría; perfiles y contornos auxiliares; posiciones extremas de piezas móviles
FINA	7. Continua	Líneas de cota; extensiones; achurado y secciones
		Ruptura de piezas largas


Ejemplos de aplicaciones de tipos de líneas.

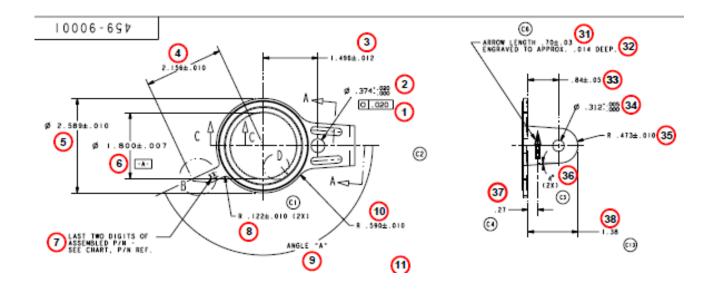
En los dibujos que se muestran a continuación, se señalan con números el tipo de línea de acuerdo a la tabla de la página anterior.

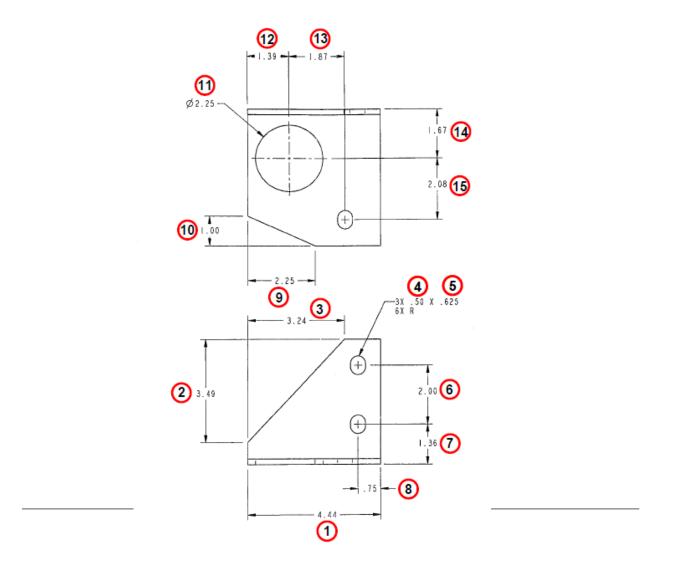


Ejercicio de tipos de líneas


1. Coloque dentro de los círculos de los dibujos mostrados abajo, los números correspondientes a las líneas indicadas en la hoja anterior.

2. Escriba los nombres de los tipos de líneas que están siendo señaladas por las letras, en el dibujo mostrado abajo a la derecha.



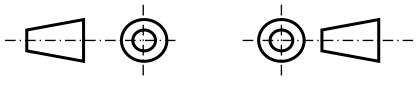

3. Complete los dibujos mostrados abajo, trazando a mano libre las líneas de ruptura según correspondan.

Ejercicio de tipos de líneas en dibujos del cliente

Con un compañero revise los dibujos de la página siguiente, identificando los tipos de línea existentes en ellos.

III. Proyecciones ortogonales

Siempre que diseñamos una pieza, esta debe ser representada mediante proyecciones ortogonales (también llamadas "vistas"). El número de vistas a utilizar está en función de la complejidad de la pieza misma, no hay una regla que limite la cantidad de vistas a emplear, sin embargo, debemos evitar el uso de vistas redundantes, es decir, vistas que no añaden información adicional de la ya disponible con el resto de las proyecciones mostradas en el plano.


Las proyecciones o vistas son imágenes obtenidas de la pieza, a través de observaciones hechas en posiciones determinadas. Así entonces, podemos hablar de la Vista Superior, Vista Frontal, Vista Lateral Derecha, Vista Lateral Izquierda, Vista posterior y Vista Inferior.

Las vistas se deben colocar alineadas entre sí. La elección de cuál vista es cuál, está a libertad del diseñador, pero una vez habiendo nombrado la primera vista, el resto adoptará el nombre correspondiente, según haya sido elegida la primera de ellas.

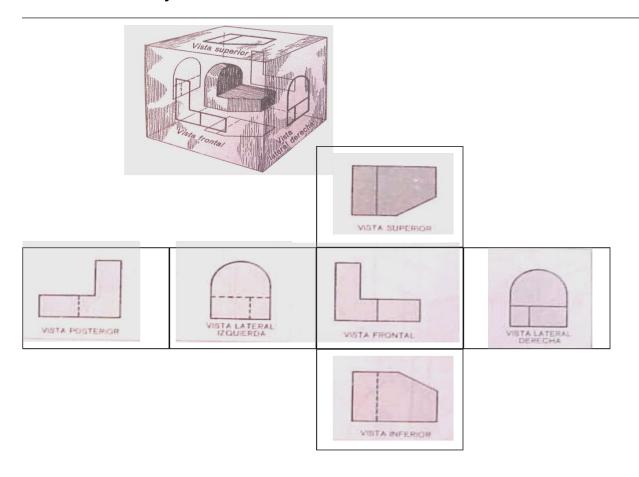
Sistema Europeo y Sistema Americano de Proyección

Existen dos sistemas normalizados para realizar las proyecciones. La diferencia fundamental está en la colocación de las vistas con respecto a ellas mismas. Para el sistema americano, una vez definida una vista, por ejemplo, la vista frontal, la vista derecha se coloca a la derecha de la frontal, la superior se coloca arriba de la frontal, y así sucesivamente. Para el Sistema Europeo, la vista derecha se coloca a la izquierda de la frontal, la superior se coloca debajo de la frontal, etcétera.

El símbolo utilizado para distinguir cuál sistema se está empleando en el dibujo es el siguiente:

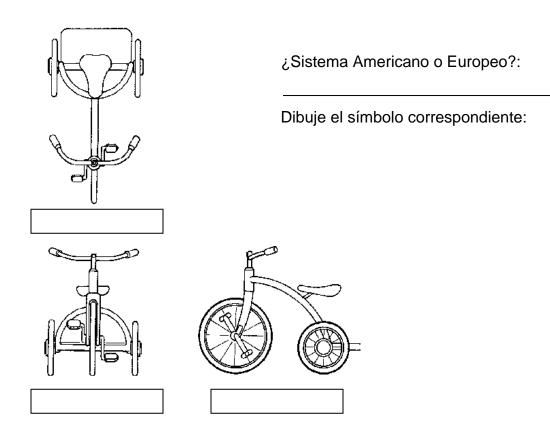
Sistema Europeo

Sistema Americano

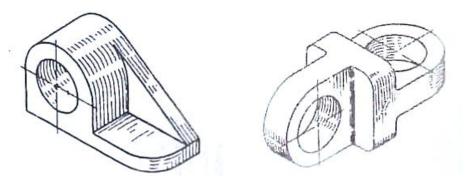

Ejemplo de Proyecciones Ortogonales o Vistas en sistema europeo Vista frontal Vista lateral Izquierda Vista superior Ejemplo de Proyecciones Ortogonales o Vistas en sistema americano Vista superior

Vista frontal

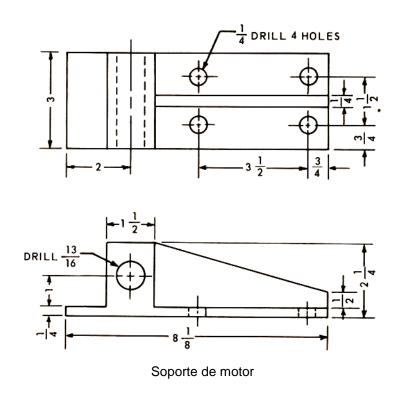
Técnica de visualización de proyecciones ortogonales


Vista lateral Izquierda

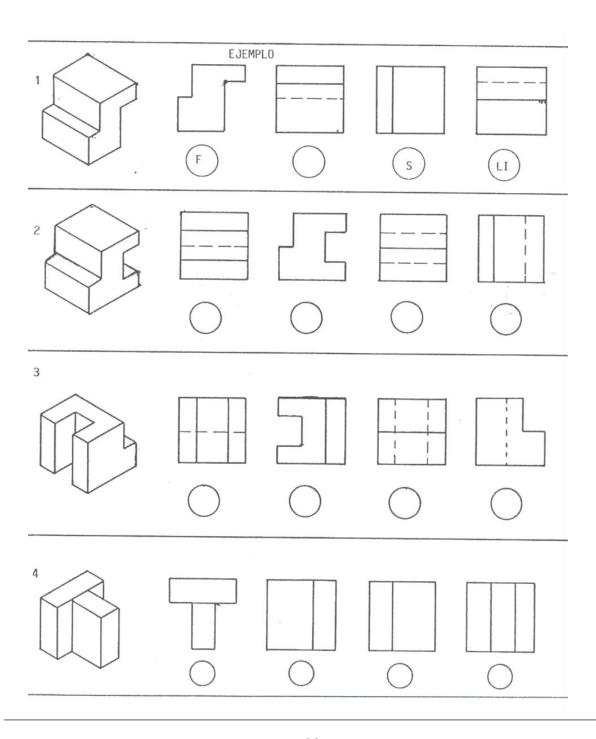
Una técnica comúnmente empleada es imaginar que colocamos la pieza dentro de una caja transparente. Al ver a través de las paredes de la caja, observamos la manera de cómo se Proyecta la Pieza en la superficie de la caja, y eso es lo que dibujamos.

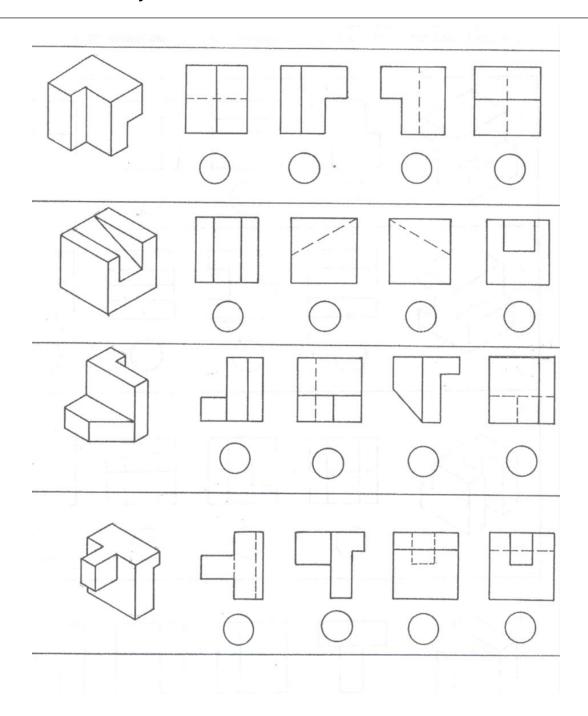


Ejercicios de Proyecciones Ortogonales o Vistas


 Determine el sistema de proyección empleado para las vistas del triciclo mostrado, dibuje en el espacio a la derecha, el símbolo del sistema identificado, y coloque el nombre de cada vista en el recuadro correspondiente

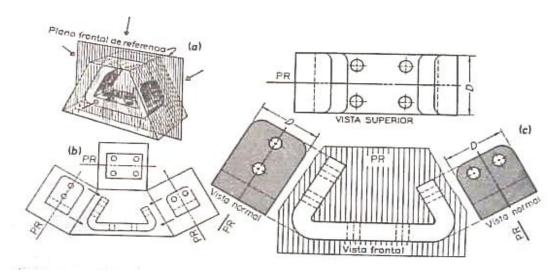
2. Dibuje las vistas o proyecciones ortogonales de las piezas mostradas, en sistema americano (tercer cuadrante).




3. Dibuje las vistas ortogonales de los dibujos siguientes en sistema europeo (primer cuadrante)

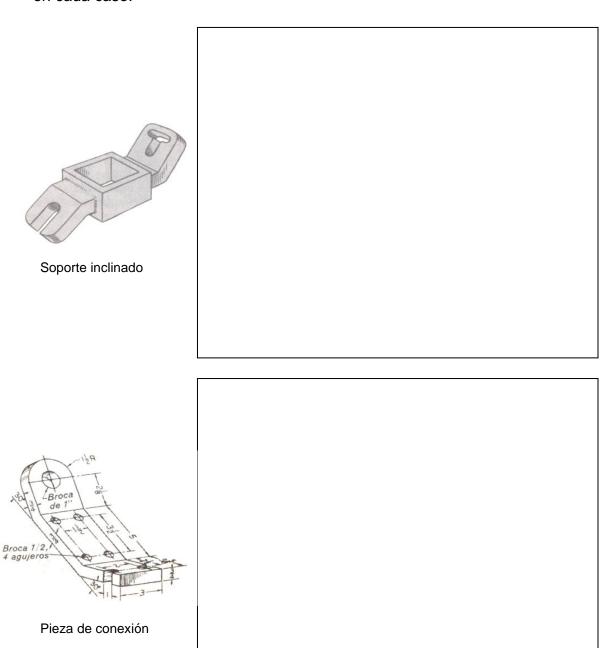
4. Revise los 13 dibujos del apéndice y determine el sistema de proyección de caduno. Identifique si el símbolo del sistema de proyección es correcto en todos ellos
Haga sus anotaciones en el espacio en blanco:

 En las figuras siguientes, cada pieza en perspectiva está acompañada de cuatro vistas o proyecciones, de las cuales sólo tres corresponden a la perspectiva.
 Coloque F para la vista frontal, S para la vista superior y LI para la vista lateral izquierda, como se muestra en el ejemplo.



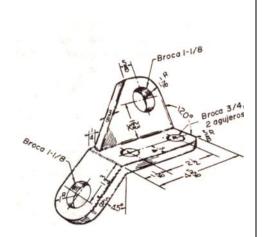
IV. Vistas Auxiliares

Las vistas auxiliares se construyen a partir de la figura real de la pieza a proyectar, en algunos casos esta no debe trasladarse a proyección ortogonal directamente ya que al hacerlo puede resultar muy complicado interpretarla, o bien, puede quedar la vista distorsionada innecesariamente.

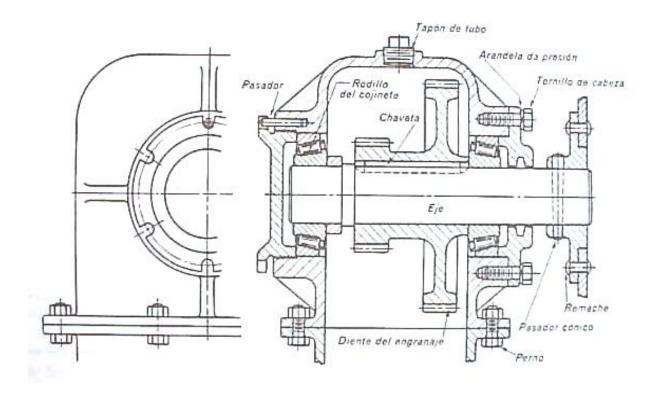

Normalmente los que se hace es dibujar la vista ortogonal, pero se sigue el ángulo natural de la vista, tal y como se ve en la figura.



Detalla de las vistas auxiliares

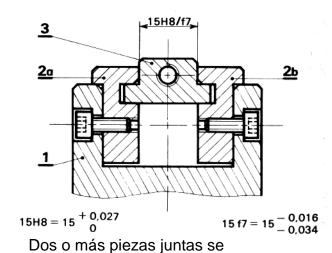

Ejercicios de vistas auxiliares:

 En los croquis siguientes se muestran algunos dibujos en perspectiva. Hacer las vistas necesarias, incluyendo las vistas auxiliares que sean también requeridas en cada caso.


Soporte en ángulo

Angulo de fijación a 120º

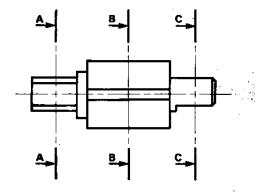
V. Cortes y secciones


Cuando se realizan dibujos mecánicos de ensambles, o cuando el interior de una pieza es muy complicado, entonces se deben emplear las secciones o cortes, donde las superficies tocadas por los cortes, se dibujan rellenándolas de líneas paralelas llamadas "achurado". Esta técnica permite resaltan las diversas partes o formas internas. La regla es muy sencilla: deberán achurarse las superficies afectadas por el corte; las partes cóncavas o convexas no se achuran.

En base a la norma DIN, se ha establecido un tipo de achurado para cada tipo de material. En la figura siguiente, se muestran los diversos achurados más comúnmente empleados.

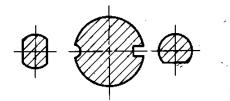
	Todes los metales y aleaciones excepto, eventualmente, los que siguen.	Materiales plásticos o aislantes y empaquetaduras.
(////	Cobre y aleación, con predominio de cobre.	Madera, en corte transversal.
	Metales y aleaciones ligeras.	Madera, en corte longitudinal.
	Antifricción y de forma general todo material colado sobre una pieza.	Vidrio.

Cuando se dibujan dos piezas en corte que forman parte del mismo ensamble, las líneas de achurado deberán dibujarse en sentidos opuestos para distinguir la presencia de ambas partes.


Los cortes deben mostrar la sección y la parte de la pieza situada detrás del plano de corte.

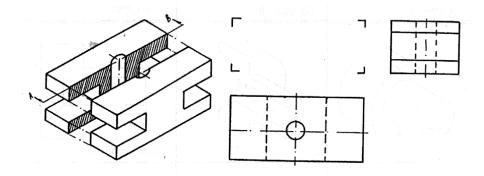
Una sección debe mostrar únicamente la parte de la pieza situada justamente en el plano de corte.

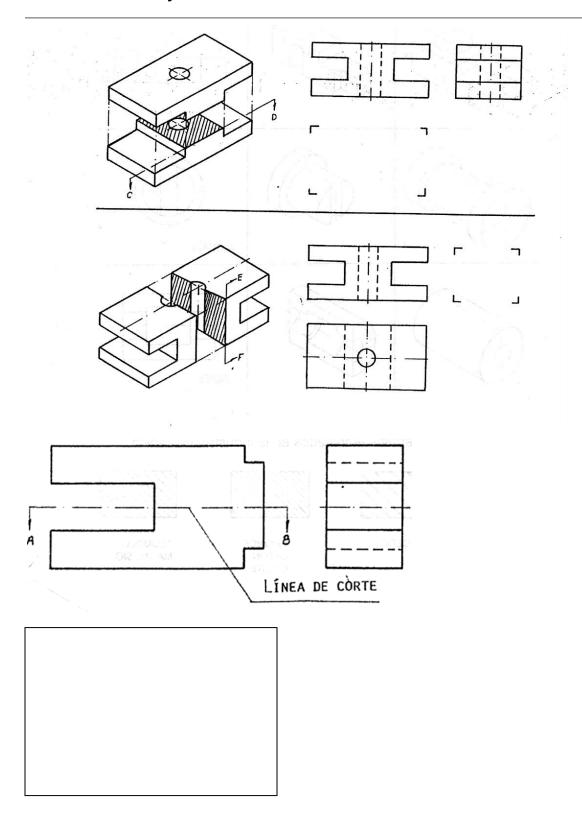
achuran en sentidos opuestos


En la figura de la derecha se muestra un ejemplo de corte, y más abajo, se muestra un ejemplo de sección. La dirección de la flecha indica el punto de vista del observador.

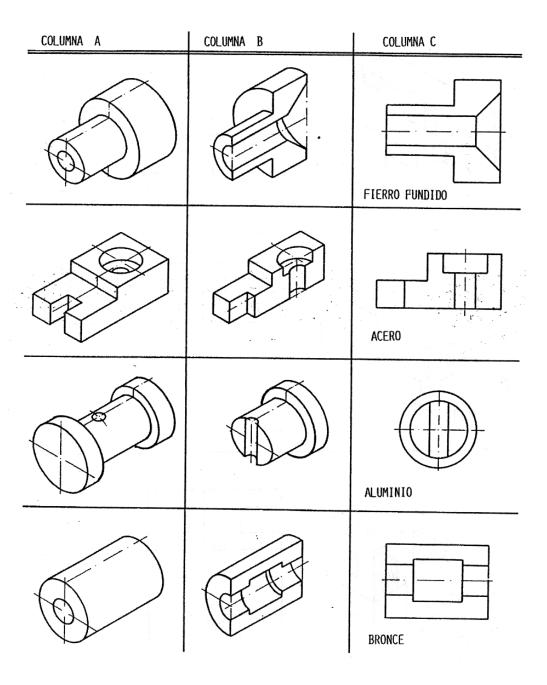
En la figura izquierda, se muestra un eje y tres secciones diferentes del mismo. La dirección de las flechas, indican el punto de vista del observador.

Las secciones se pueden dibujar en dos formas:

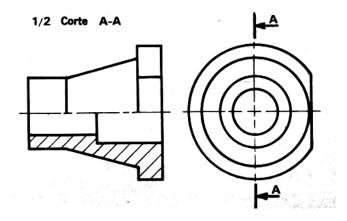




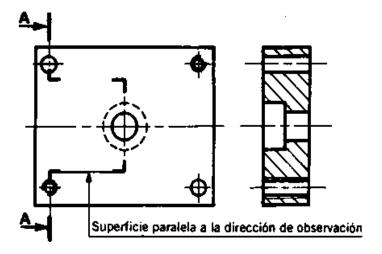
- **Desplazadas**. Se dibujan fuera del contorno de la pieza, tal como se muestra a la izquierda.
- **Abatidas.** Se dibujan dentro del contorno de la pieza.


Ejercicio # 1 sobre cortes y secciones

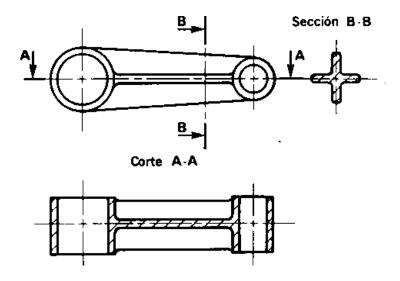
 Complete a mano alzada los dibujos mostrados más abajo. Haga los cortes indicados en el dibujo de perspectiva o en la vista mostrada, marcando las líneas de corte respectivas.



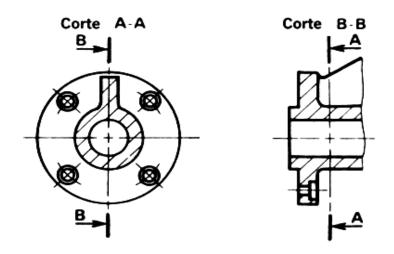
2. En las figuras mostradas a continuación, las piezas se representan en perspectiva en la columna A, en la columna B deberá sombrear las superficies afectadas por el plano de corte, y en la columna C haga el achurado correspondiente al tipo de material indicado, de acuerdo al plano de corte en B.


Medios cortes

Cuando la pieza es simétrica, es una práctica común emplear medios cortes porque tiene la ventaja de mostrar en una misma vista los detalles internos y externos de la pieza.


Corte escalonado o quebrado

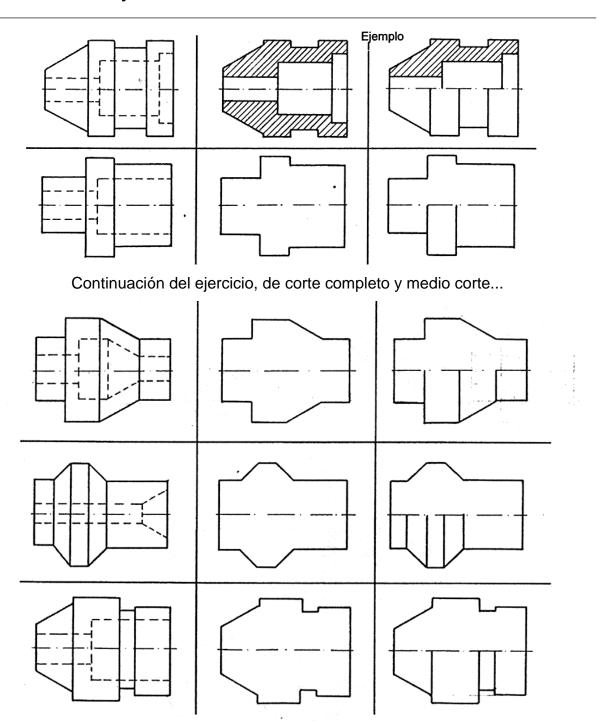
Cuando es necesario mostrar diversos detalles y no se desean hacer muchos cortes, entonces se puede usar en una misma vista un solo corte en forma escalonada. Este corte solo se emplea si no hay superposición de planos.


Corte de nervios.

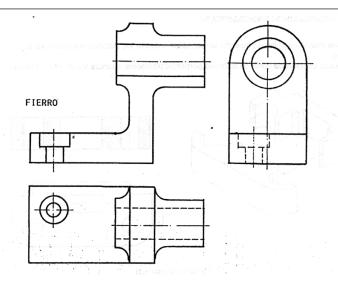
Cuando una pieza tiene nervios que son afectados por el plano de corte, no se deberá achurar el nervio. Este principio permite distinguir el corte de una pieza con nervios, de una pieza maciza.


Corte con un patrón de características distribuidas

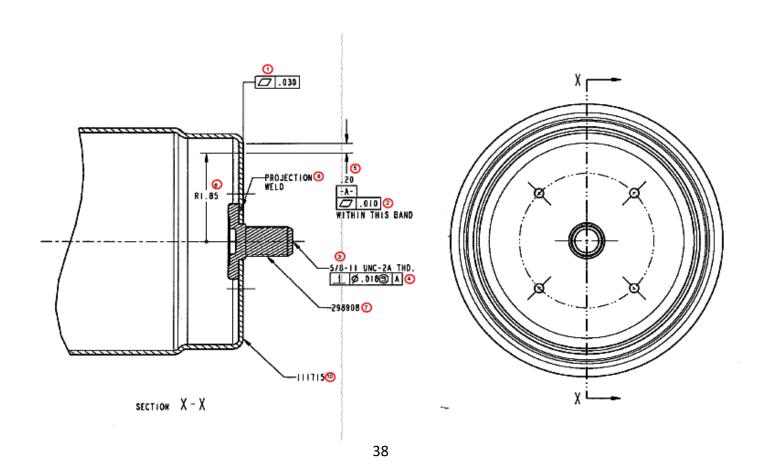
Se puede, si no da lugar a ninguna confusión, girar estos detalles hasta el plano de corte, sin que sea necesario indicarlo.


Cortes parciales

Se utiliza para resaltar con línea gruesa un detalle interesante. En general, la indicación del plano de corte es innecesaria. El achurado de la parte cortada queda limitado por una línea continua fina trazada a mano alzada.



Ejercicio # 2 sobre cortes y secciones


 En los dibujos mostrados abajo, complete la vista con el corte completo y con un medio corte. Vea el ejemplo

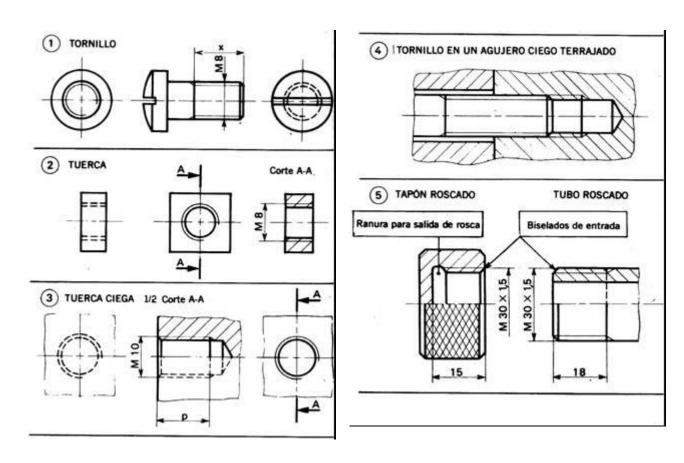
2. En el dibujo mostrado a continuación, dibuje la línea de corte quebrada en la vista correspondiente y achure según sea necesario.

3. En el dibujo siguiente identifique el error en la representación del corte. El dibujo está en tercer cuadrante (Sistema Americano de proyección):

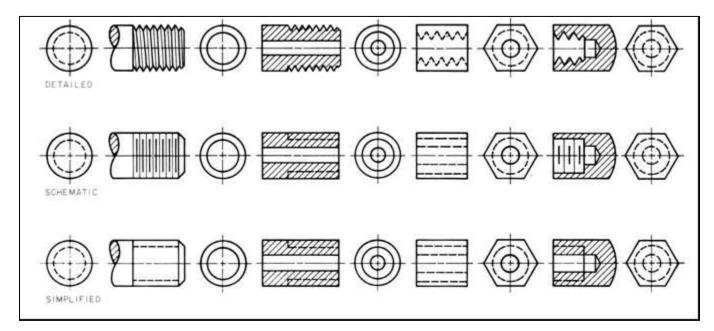
VI. Dibujo de elementos roscados

En esta sección, estudiaremos la manera de representar diversos elementos roscados

Roscas

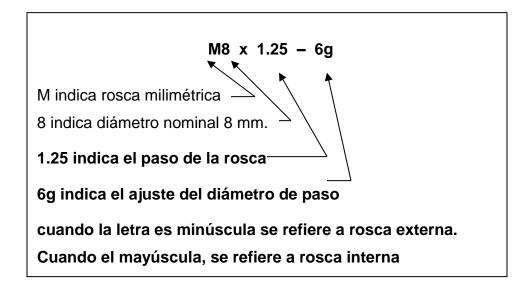

Las roscas se utilizan en:

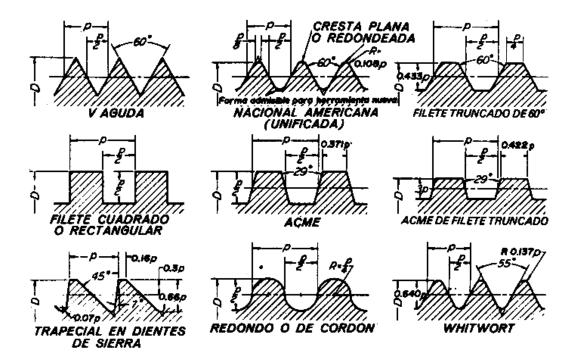
- □ tornillos para aplicar fuerza (p. ejemplo: tornillo de banco)
- □ tornillos para transmitir movimiento (p. ejemplo: husillos)
- □ tornillos para hacer un ensamble entre dos componentes que permitan desarmar las piezas sin dañarlas.

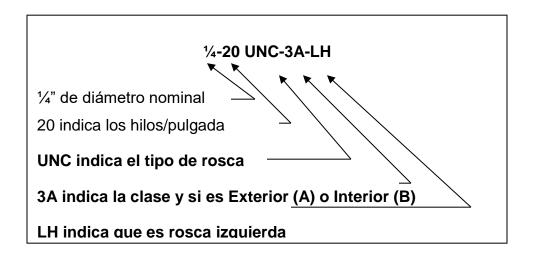

Cualquier tipo de roscas pueden ser externas o internas

En las figuras siguientes, se muestra el dibujo "pictórico" (no usado normalmente en dibujo técnico), y el dibujo simplificado para representar roscas internas y externas tanto en norma americana como europea.

Representación Europea de roscas:




Representación Americana de roscas:


Nomenclatura de roscas para tornillos:

Para designar una rosca para tornillo milimétrico, se utiliza la siguiente nomenclatura:

Para designar una rosca para tornillo estándar (en pulgadas), se usa la siguiente nomenclatura:

Otras posibles designaciones de perfiles de roscas pueden ser las siguientes:

G - Rosca europea para gas; G 2 - ½; Rosca para gas, tubo de 2.5"

BPS- Rosca inglesa para tubería; ¼ - BPS; rosca de ¼" para tubería inglesa

NPT- Rosca americana para tubería; 2 - ½ - NPT; Rosca para tubo de 2.5"

NS o UNS - Rosca especial para tornillo americano-canadiense

NF o UNF - Rosca fina para tornillo americano-canadiense

NEF o UNEF - Rosca extrafina para tornillo americano-canadiense

ANSI, Series de roscas estándares americana y unificada a

Hilos por pulgada para la gruesa, fina, extrafina y las 8-pitch, 12-pitch y 16 pitch.^b
[Los tamaños de las brocas para machos de roscar son para aproximadamente el 75% de la profundidad de la rosca (no se dan para la estándar americana)]

Tamaño nomi- nai (diámetro mayor básico)	Series de rosca gruesa UNC y NC ^C en las clases 1A, 1B, 2A, 2B, 3A, 3B, 2, 3		Series de rosca fina UNF y NFC en las clases 1A, 1B. 2A, 2B, 3A, 3B, 2, 3		Series de rosca extratina UNEF y NEF d en las clases 2A, 28, 2, 3		Series de rosca de 8 pitch, 8Nº en las clases 2A, 2B, 2, 3		Series de roaca de 12 pitch, 12 UN y 12Md en las clases 2A. 2B, 2, 3		Series de rosca de 16 pitch, 16 UN y 18N ^d en las clases 2A, 2B, 2, 3	
	Hilos por pulg.	Broca para el macho	Hilos por pulg,	Broca para el macho	Hilos por puig.	Broca para el macho	Hilas por pulg.	Broca para el macho	Hilos por pulg.	Broca para el macho	Hilos por pulg.	Broca para el macho
0(0.060)			80	364		1 1 2					. 1	
1(0.073)	64	No. 53	72	No. 53			1 10 1				\$	
2(0.086)	56	No. 50	64	No. 50			•				1.	
3(0.099)	48	No. 47	56	No. 45		<u> </u>					÷ .	
4(0.112)	40	No. 43	48	No. 42		1 4						1
5(0.125)	40	No. 38	44	No. 37		19.5						
6(0.138)	32	No. 36	40	No. 33							1	
8(0.164)	32	No. 29	36	No. 29							1 1	
10(0.190)	24	No. 25	32	No. 21							1	
12(0.216)	24	No. 16	28	No. 14	32	No. 13		14				
1/4	20	No. 7	28	No. 3	32	1/32						
516	18	Let. F	24	Let. I	32	%3 2		1.3				
38	16	5/16	24	Let. Q	32	11/32		100			1 1	
% 6	14	Let. U	20	25/64	28	13/32					1	
1/2	13	2764	20	29/64	28	15/32			12	27/64		
%6	12	31/64	18	33/64	24	33/64		1.1.1	12	31/64		
58	11	17/32	18	37/64	24	37/64			12	35/64		ea e i
11/16		1			24	41/64		45.	12	3964	10.	
3/4	10	21/32	16	11/16	20	45/64			12	43/64	16	11/16
13/16			1.		20	49/64	1		12	47/64	16	34
1∕8	9	4964	14	13/16	20	53/64		1	12	51/64	16	13/16
15/16		4.4.6	hi	(445 · · ·)	20	57/64		1.21	12	55/64	16	7/8
1			, 14	15/16	i •••	1::::	8	1/8	- 1			
1	8	7/8	12	5964	20	61/64			12	59/64	16	15/16
1 1/16			V - † ,		18	1			12	63/64	16	1
1 1/8	7	63/64	12	1 3/64	18	1 5/64	8	1.	12	1 3/64	16	1 1/16
1 3/16			·	3.00.	18	1 %4	1 ::	1:::	12	1 764	16	1 1/8
1 1/4	7	1 1/64	12	111/64	18	1 316	8	11/8	12	111/64	16	1 316
1 5/16			18.10	4.5 3	18	11764		1:::1	12	11564	16	1 1/4
1 3/8	6	1 3/32	12	11964	18	1 5/16	8	11/4	12	11964	16	1 5/16
1 1/16					18	1 3/8			12	12364	16	1 38
1 1/2	6	111/32	12	12764	18	1 1/16	8	13/8	12	12764	16	1 7/16
1 % 6			9: •& 7	2	18	1 1/2		1:::	: 11 -	133	16	1 1/2
1 5/8					18	1 %16	8	11/2	12	13564	16	1 % 6
111/16			·		18	1 5%			5.20hr		16	1 5/8

Lectura de Planos y GD&T

Ejercicios sobre identificación de roscas:

1. Describa en cada caso el tipo de rosca especificada:

1-1/8 –7 NC – 3B

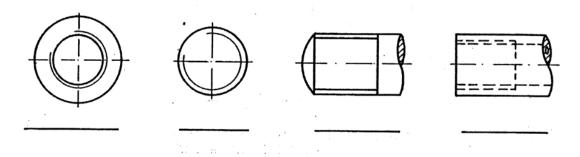
M6 x 0.75 6g

5/8-11 UNC - 3A

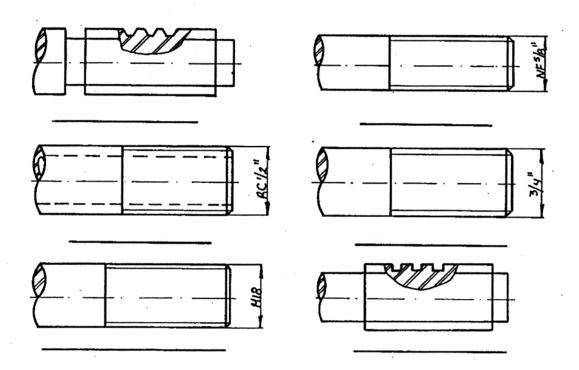
7/16 -20 UNF - 2B

M24 x 3 6H

M16 x 1.5 6G


2 - 16 UNEF - 2A

M2 x 0.4 6g

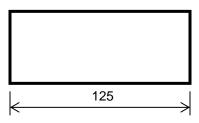

Lectura de Planos y GD&T

2. En la figura siguiente, se muestran algunos dibujos de elementos roscados, conteste según lo que se pide en cada caso:

Escriba en la línea de que tipo de rosca se trata, ya sea interna o externa.

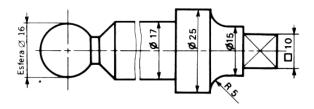
Escriba el tipo de rosca de la que se trata abajo de cada diseño.

VII. Acotación dimensional

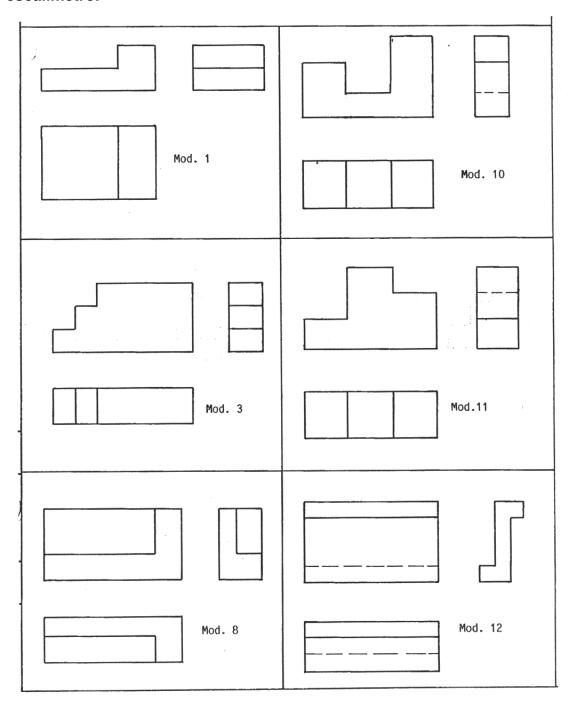

Un dibujo de ingeniería, además de mostrar la forma de una pieza, deberá incluir acotaciones para indicar las dimensiones, tolerancias dimensionales, tolerancias geométricas y el factor de escala usado en el plano.

Recomendaciones para acotar dibujos

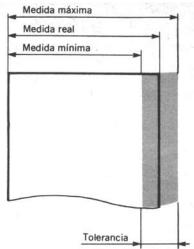
Una cota, es básicamente una indicación del tamaño de una característica de la pieza. Una característica puede ser el diámetro, la longitud, la profundidad, etcétera.


Una cota consiste básicamente de:

- □ Unas líneas de referencia, trazadas en línea fina continua
- □ Una línea de cota, trazada en línea fina continua
- Un valor numérico de la dimensión
- Un par de flechas de cota


Para acotar ciertas características, se emplean algunos símbolos normalizados:

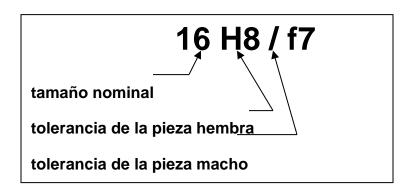
Elemento a acotar	Símbolo normalizado
Diámetro	Ø
Radio	R
Cuadrado	
Radio esférico	Sph - R / R esf.
Diámetro esférico	Sph – ∅ / ∅ esf.


Ejercicios de acotación.

Utilice la regla para medir y acotar los dibujos siguientes. NO haga trazos con el escalímetro.

Tolerancias dimensionales

La inevitable variación de los procesos de fabricación, obliga a los ingenieros a definir un intervalo de tolerancia dentro de los cuales, se permite que varíe la dimensión nominal de la pieza.

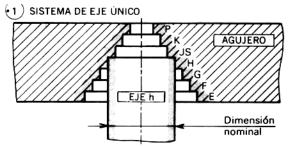


Sistema ISO de tolerancias y ajustes.

El sistema ISO, define las tolerancias de fabricación en base al ajuste requerido para el funcionamiento entre dos partes que ensamblan. Existen tres tipos de ajuste:

- Ajuste con holgura o juego
- Ajuste indeterminado
- Ajuste forzado

El ajuste entre dos partes que ensamblan juntas se designa de la manera siguiente:


Lectura de Planos y GD&T

Para cada dimensión nominal, se ha previsto un conjunto de tolerancias que se designan como IT 01, IT 0, IT 1, IT 2, IT 3, IT 16. Entre más grande es el valor IT, mayor es el intervalo de tolerancia otorgado.

Calidad	Hasta 3 incluido	120000000000000000000000000000000000000	6 10	10 18	18 30	30 50	50 80	80 120	120 180	180 250
5	4	5	6	8	9	11	13	15	18	20
6	6	8	9	11	13	16	19	22	25	29
7	10	12	15	18	21	25	30	35	40	46
8	14	18	22	27	33	39	46	54	63	72
9	25	30	36	43	52	62	74	87	100	115
10	40	48	58	70	84	100	120	140	160	185
11	60	75	90	110	130	160	190	220	250	290
12	100	120	150	180	210	250	300	350	400	460
13	140	180	220	270	330	390	460	540	630	720
14	250	300	360	430	520	620	740	870	1 000	1 150
15	400	480	580	700	840	1 000	1 200	1 400	1 600	1 850
16	600	750	900	1 100	1 300	1 600	1 900	2 200	2 500	2 900

Sistema de eje único.

Cuando se usa este sistema, la tolerancia para el eje se designa por la letra h (tolerancia = +0/-xxx). El ajuste deseado se obtiene haciendo variar la tolerancia del agujero.

NOTA: El eje y el agujero están representados en su estado de máximo material


Aplicaciones del sistema de agujero único:

Cuando se utilizan ejes comerciales rolados en frío, el ajuste se logra variando la dimensión del buje; cuando se emplean rodamientos, el ajuste se logra variando el diámetro del alojamiento para el rodamiento.

Sistema de agujero único.

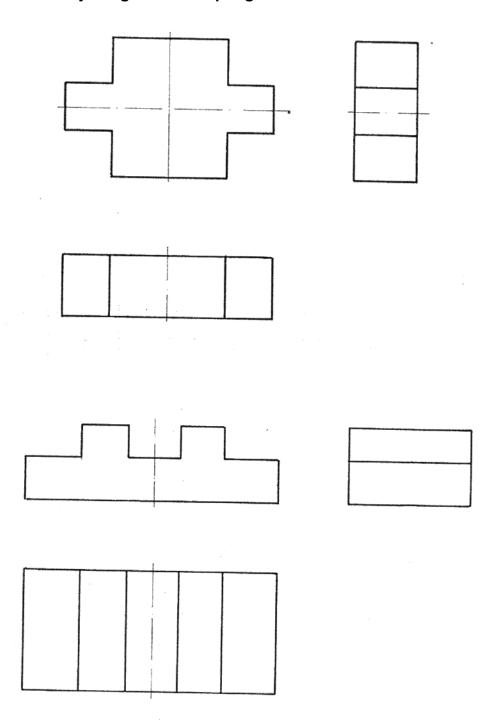
Cuando se usa este sistema, la tolerancia para el agujero se designa por la letra H

(tolerancia = + xxx / - 0). El ajuste deseado se obtiene haciendo variar la tolerancia del eje. Este es el sistema usado con preferencia ya que es más fácil modificar las tolerancias del eje que la del agujero.

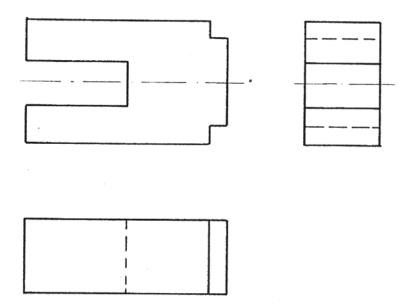
NOTA: El eje y el agujero están representados en su estado de máximo material

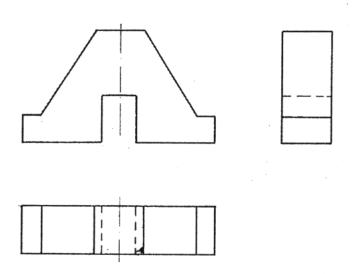
Escala de dibujo.

La escala del dibujo, representa el tamaño de la pieza dibujada en el papel, en relación al tamaño real del objeto.


Escala 1:2

1 mm en el papel, representa 2 mm del objeto real. El dibujo es la mitad del tamaño del objeto real


Escala 2:1


2 mm en el papel, representa 1 mm del objeto real. El dibujo es el doble del tamaño del objeto real Ejercicios de dibujo en escala.

Acote los dibujos siguientes. Suponga una escala 1: 2.5.

Los dibujos siguientes están en escala natural (1:1). Haga las acotaciones correspondientes:

Llene las tablas, según las instrucciones de cada una de ellas.

Completar la siguiente tabla, según sus conocimientos.

Dimensión de la	Escala	Dimensión del	Dimensión de	Escala	Dimensión del
pieza		diseño	la pieza		diseño
Ej. 40	1:2.5	16		2:1	15
50		50	120		48
	1:2	12	300	1:10	
25		125		1:2	70
35	1:2.5		45	5:1	
6	2:1		2000		100
100		10	•	1:2.5	40
	1:1			1:5	40
75	-	15	5	5:1	

Encuentre entre los cuadros alternativas de escala y marque con una X la respuesta correcta.

			ESC.	AI A	
Dimensión de la	Dimensión del		1200		
pieza	diseño				
240	120	1:2	5:1	1:2.5	2:1
125	25	1:10	5:1	2:1	1:5
70	70	2:1	1:2	5:1	1:1
400	40	5:1	1:1	1:10	10:1
45	90	1:5	1:2	1:2.5	2:1
7	35	1:2.5	5:1	1:5	1:2
200	20	10:1	1:2	1:1	1:10
25	5	5:1	2:1	1:10	1:5
26	52	2:1	1:1	5:1	1:2
540	108	1:5	1:1	5:1	1:2
21	105	1:5	1:10	2:1	1:2

VIII. Conceptos sobre dimensionado y aplicación de tolerancias geométricas (GD&T)

Definiciones

Dimensión

Es un valor numérico o expresión matemática escrita en unidades de medición apropiadas y usada para definir la forma, tamaño, orientación o localización de una parte o característica.

Tolerancia

Es la cantidad total de variación permitida a una dimensión; así entonces, la tolerancia es la diferencia entre los límites máximo y mínimo.

Tolerancia Geométrica

Es el término general aplicado a la categoría de tolerancias usadas para controlar:

- Tamaño
- Forma
- Perfil
- Orientación
- Localización
- Cabeceo

Lectura de Planos y GD&T

Dimensión de referencia:

Es una dimensión sin tolerancia, usada únicamente con propósitos de información. Se muestra en un dibujo entre paréntesis.

Característica

Es el término general aplicado a una porción física de una parte tal como: superficie, perno, agujero o ranura, o su representación en dibujos, modelos o archivos electrónicos de datum.

Característica de tamaño regular

Es una superficie esférica o cilíndrica, un elemento circular, un conjunto de dos elementos paralelos opuestos, o un juego de dos superficies planas paralelas opuestas, cada una de las cuales se asocia con una dimensión a la que se aplica una tolerancia de forma directa.

Característica de tamaño irregular

Es una característica o colección de características a la se le aplica una tolerancia de forma directa, la cual contiene o puede estar contenida por una cubierta envolvente al tamaño real que es de forma esférica, cilíndrica, un par de planos paralelos, o cualquier otra forma envolvente.

Tamaño real local

Es el valor medido de cualquier distancia individual en una sección transversal de una característica de tamaño.

Tamaño Comercial (Stock Size)

Es la designación de tamaño usada por el fabricante para designar comercialmente las dimensiones de barras, perfiles, placas, etc.

Tamaño Nominal

Es la designación de tamaño usada para propósitos de identificación general.

Datum

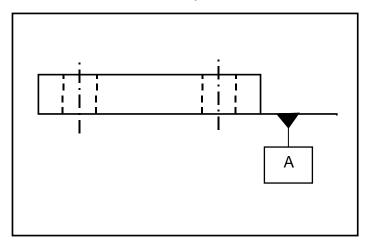
Un datum es un plano, línea, eje o punto exacto, derivado del simulador teórico de la característica datum. Un datum es el origen a partir del cual se establecen las características geométricas o de localización.

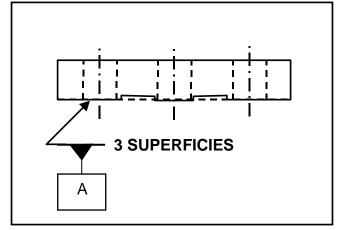
Característica datum

Es la característica real sobre la parte, en la cual, se establece el datum. La característica datum se identifica, ya sea, con el símbolo de característica datum o el símbolo de datum específico.

Símbolo de característica datum.

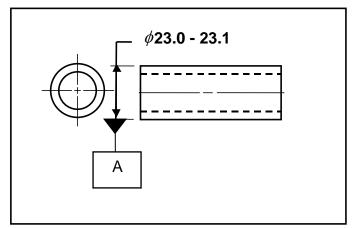
La característica datum se identifica en los dibujos por una letra mayúscula, encerrada en un recuadro. Cualquier letra puede utilizarse, excepto I, O y Q.

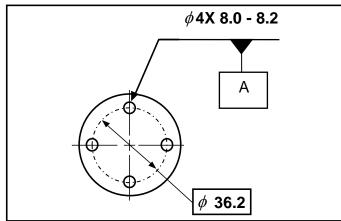



La característica datum puede ser:

Una superficie

Lectura de Planos y GD&T

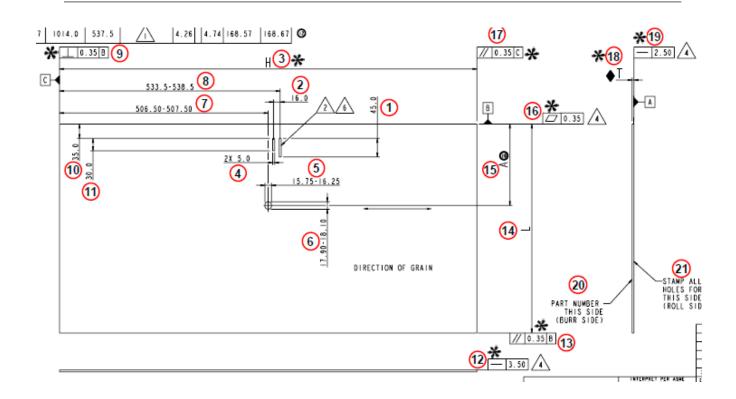

- Superficies múltiples
- Una característica de tamaño
- Un patrón de características de tamaño



Una superficie

Superficies múltiples

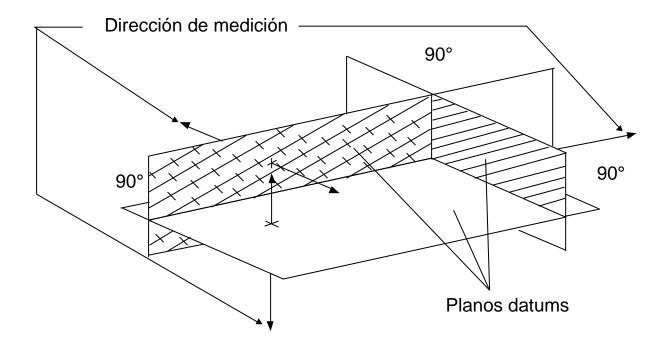
Una característica de tamaño



Un patrón de características de tamaño

Ejercicio: en el dibujo siguiente identifique los datum y explique qué tipo de característica es cada datum

:


Lectura de Planos y GD&T

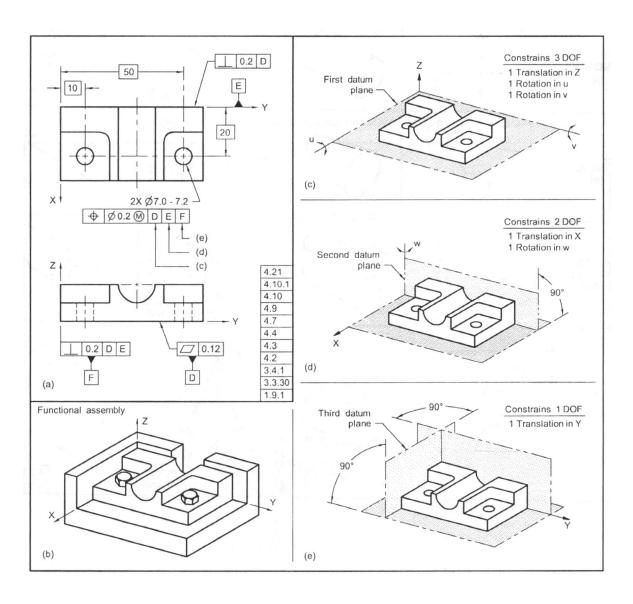
MARCO DE REFERENCIA PARA DATUMS

Origen

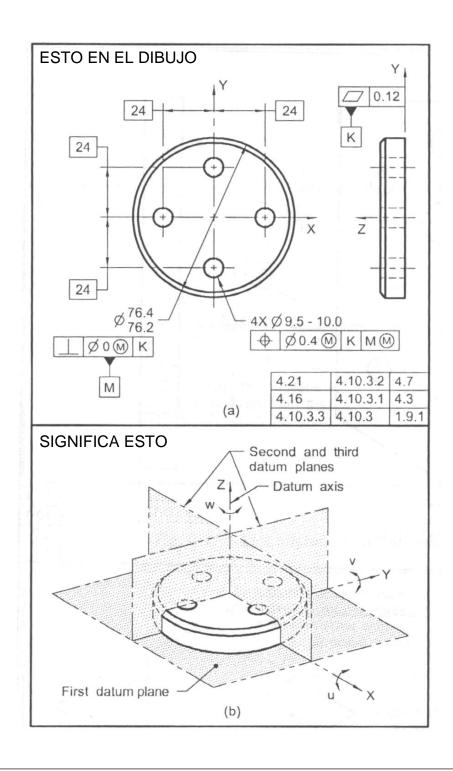
Se deben seleccionar suficientes características datum o porciones de dichas características de la parte para posicionarla en un conjunto de tres planos mutuamente perpendiculares que juntos son llamados un marco de referencia para datums. Este marco de referencia existe sólo en teoría, y no en la parte. Este marco de referencia teórico soporta el sistema de dimensionamiento de tres planos, utilizado para el proceso y en los equipos de calibración y medición.

ESPECIFICACIÓN DEL ORDEN DE PRECEDENCIA PARA DATUMS

Para posicionar adecuadamente una parte o pieza en el marco de referencia para datums, la característica datum debe ser seleccionada en base en los requerimientos funcionales y tridimensionales del diseño. Esto simula la forma en que una parte o pieza es colocada en el ensamble final. La característica datum debe ser registrada en una secuencia específica llamada precedencia de datums.


La precedencia de datums y los puntos mínimos de contacto requeridos con la parte son:

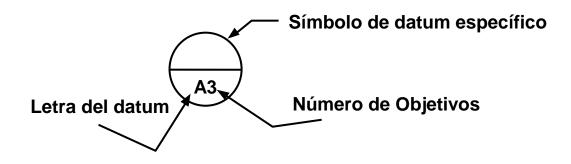
- Datum primario -- tres puntos
- Datum secundario -- dos puntos
- Datum terciario -- un punto


EL EFECTO DEL MARCO DE REFERENCIA TRIDIMENSIONAL SOBRE SUPERFICIES PLANAS

ESTO EN EL DIBUJO:

SIGNIFICA ESTO:

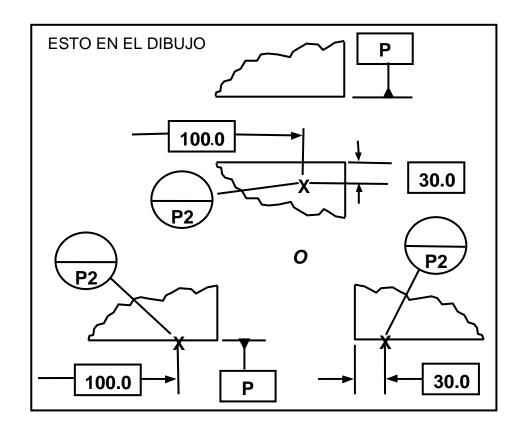
EL EFECTO DEL MARCO DE REFERENCIA TRIDIMENSIONAL SOBRE UNA PARTE CILÍNDRICA

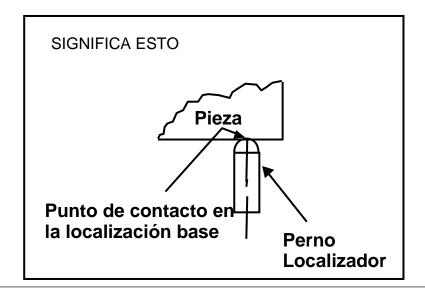

DATUMS ESPECÍFICOS

PROPÓSITO

Debido a consideraciones de manufactura, o irregularidades inherentes de algunas superficies, la superficie entera de la pieza no se usa como un datum de referencia.

Los datums específicos designan a puntos específicos, líneas o áreas de contacto sobre una pieza para establecer el marco de referencia.

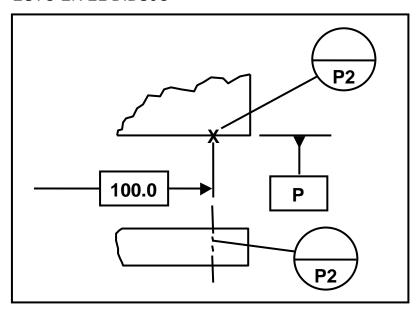

Símbolo de datum específico

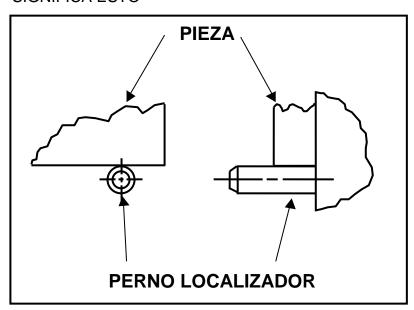


Adicionalmente se puede incluir:

PUNTOS DE DATUMS ESPECÍFICOS

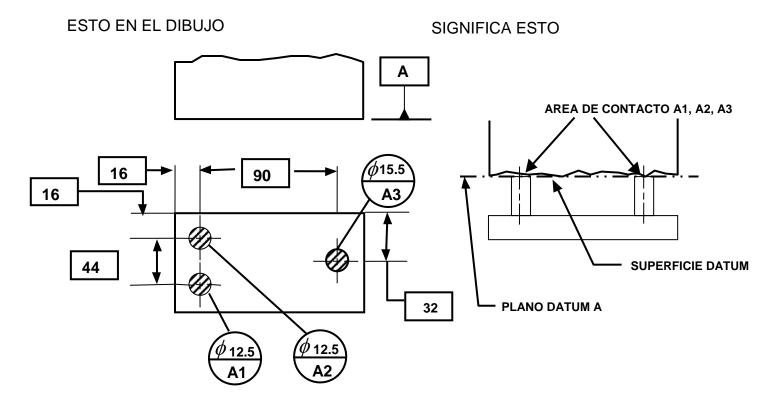
El punto de datum específico se usa para identificar el punto sobre el cual se hace contacto con la característica datum de la parte.



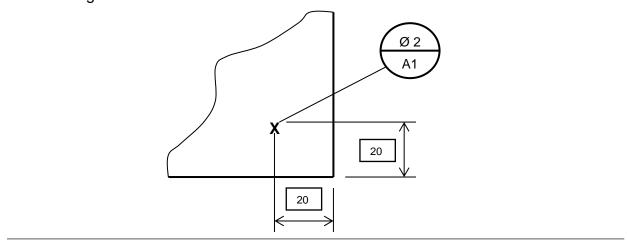

LINEAS DE DATUMS ESPECÍFICOS

La línea de datum específico se usa para identificar una línea sobre la cual se hace el contacto.

ESTO EN EL DIBUJO

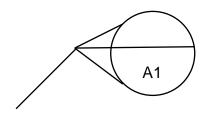


SIGNIFICA ESTO



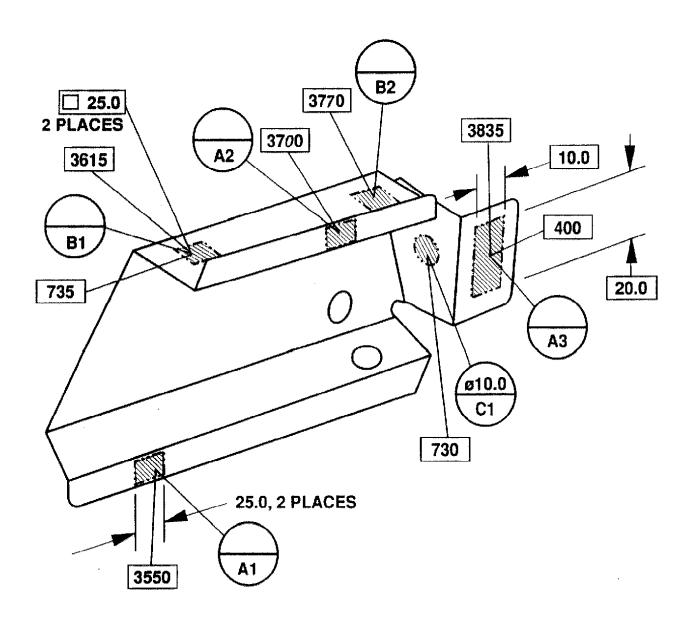
AREAS DE DATUMS ESPECÍFICOS

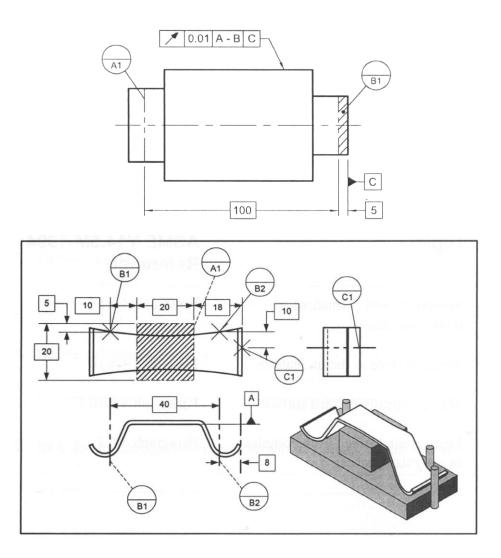
El área de datum específico se usa para identificar un área sobre la cual se hace el contacto. El área específica puede ser circular o de cualquier otra forma. El área de datum específico se indica mediante líneas de sección de la forma deseada, dentro del área de la pieza.




Donde es poco práctico definir un área de datums específicos circular, se puede utilizar el siguiente método.

DATUMS ESPECÍFICOS MÓVILES


El símbolo para datum específico móvil puede usarse para indicar el movimiento del simulador de la característica datum para el datum específico. Cuando los datums específicos establecen un punto central, eje o plano central en base a RMB, el simulador de la característica datum se mueve en dirección normal al perfil verdadero de la parte. En otros casos, cuando se requiere que el simulador de datum sea móvil y cuando el movimiento no es normal al perfil verdadero, se deberá usar el símbolo de datum específico móvil, estableciendo claramente la dirección de movimiento requerida.


EJEMPLO

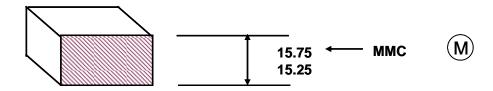
El siguiente es un ejemplo de la forma de dibujar datums específicos

EJEMPLOS

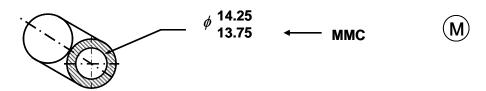
Los siguientes son dos ejemplos de indicaciones de datums específicos para características de formas diversas.

SÍMBOLOS DE CONDICIÓN Y FRONTERA DE MATERIAL

Los símbolos de condición y frontera de material se usan únicamente en aplicaciones de dimensionamiento y tolerado geométrico (GD&T). También son conocidos como símbolos modificadores.


Hay dos símbolos de condición de material, con 2 interpretaciones posibles para cada símbolo, lo cual depende si se aplica a una característica referida como datum. La tercera condición (RFS o RMB) no tiene símbolo y es la condición establecida por omisión (ver más adelante la regla # 2 de GD&T).

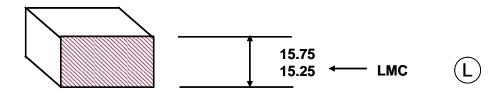
Símbolo	Término	Abreviatura
M	Condición de material máximo. Frontera de material máximo.	MMC MMB – datum
L	Condición de material mínimo. Frontera de material mínimo.	LMC LMB – datum
Sin símbolo	Sin importar el tamaño de la característica Sin importar la frontera de material.	RFS RMB – datum


CONDICIÓN DE MATERIAL MÁXIMO (MMC)

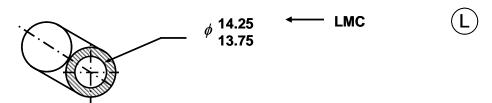
Definición.

Es la condición en la cual una característica de tamaño contiene la máxima cantidad de material dentro de los límites establecidos. Esto es, los diámetros y ancho exteriores están al límite mayor del tamaño; los diámetros y espesores interiores están al límite mínimo o más pequeño del tamaño.

Condición de Material Máximo en una característica externa - MMC



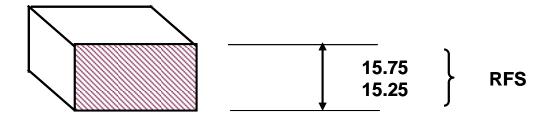
Condición de Material Máximo en una característica interna - MMC


CONDICIÓN DE MATERIAL MÍNIMO (LMC)

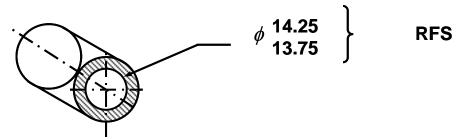
Definición

Es la condición en la cual la característica de tamaño contiene la mínima cantidad de material dentro de los límites establecidos. Esto es, los diámetros y ancho exteriores están al límite mínimo o más bajo de tamaño; los diámetros y espesores interiores están al límite máximo o mayor de tamaño.

Condición de Material Mínimo en una característica externa - LMC



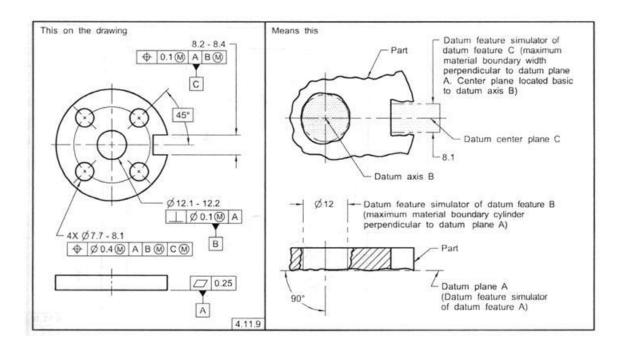
Condición de Material Mínimo en una característica interna - LMC


SIN IMPORTAR EL TAMAÑO DE LA CARACTERÍSTICA (RFS)

Definición

Indica que la tolerancia geométrica se aplica para cualquier incremento de tamaño de la cubierta envolvente real de la característica de tamaño.

Característica externa - RFS

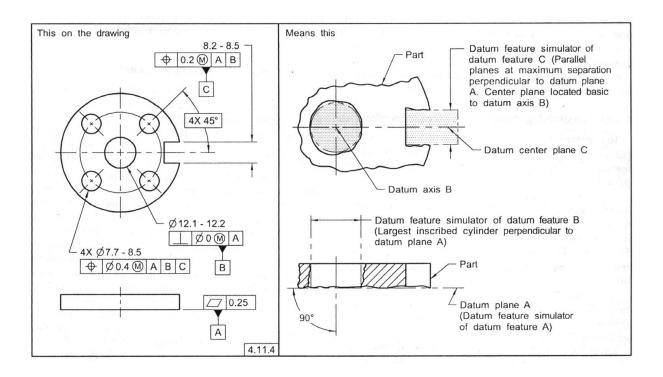

Característica interna - RFS

FRONTERA DE MATERIAL MÁXIMO (MMB)

Definición

Es el límite definido por una tolerancia o una combinación de tolerancias, que existe en la pieza o por el exterior del material de la característica.

- El simulador de la característica datum B es una frontera de máximo material, de tamaño fijo = φ 12.0 para contener la pieza en el agujero central. Esto genera un "Corrimiento" en el Datum B.
- El simulador de la característica datum C es una frontera de máximo material, de tamaño fijo = 8.1 para localizar la ranura de la pieza en su plano central. Esto genera un "Corrimiento" en el Datum C.



SIN IMPORTAR LA FRONTERA DE MATERIAL (RMB)

Definición

Indica que el simulador de la característica datum progresa desde MMB hacia LMB hasta que hace el máximo contacto con las extremidades de una característica.

- El simulador de la característica datum B progresa en tamaño desde ø 12.1 hasta ø12.2 para contener la pieza en el agujero central, sin importar el tamaño del agujero central.
- El simulador de la característica datum C progresa desde una separación de
 8.2 hasta 8.5 para tocar la ranura, sin importar el tamaño de la misma.

DIMENSIONES BÁSICAS

Una dimensión básica es considerada como una dimensión teóricamente perfecta. Se usa para describir la localización teóricamente exacta de una característica o grupo de características. También se utiliza para localizar datums.

Las dimensiones básicas son la base para las tolerancias geométricas.

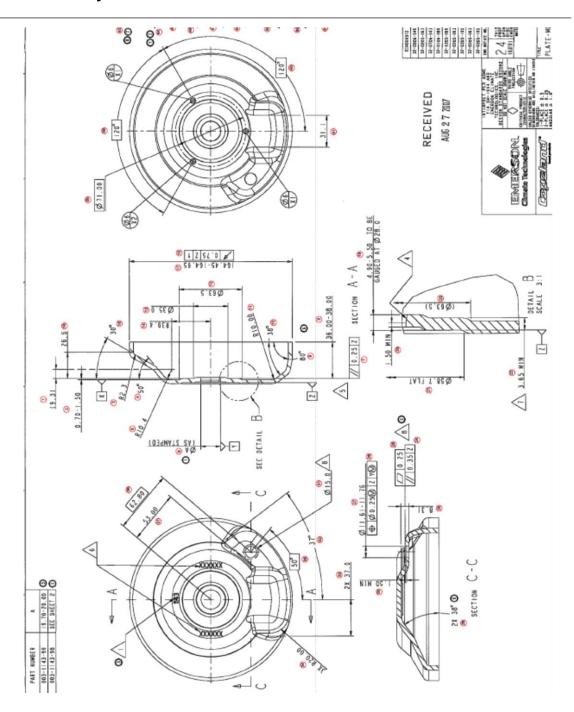
Las dimensiones básicas son mostradas en los dibujos de la siguiente forma:

2.5

Dimensiones lineales

30°

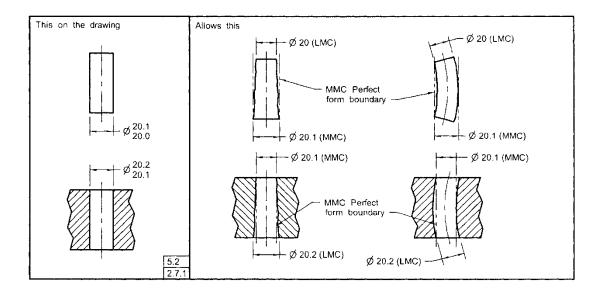
Dimensiones angulares


ACTIVIDAD DE APRENDIZAJE

Inctr		an	^~:
Instr	ucci	OH	-5-

Selecciona un compañero. Juntos, revisen y contesten las siguientes preguntas. Pueden buscar respuestas en este manual o discutir con otros miembros de la clase.

۱.	(Completar el siguiente enunciado) Un datum es un,		
	,o	derivado	
	del simulador teórico de la característica datum.		
2.	Una datum es el	a partir del cual se establecen	
	las características geométricas o de localización		


- 3. Expliquen la función de cada uno de los siguientes elementos datum:
 - Punto datum específico
 - Línea datum específico
 - Área datum específico
 - Símbolos de datums específicos (fijo y móvil)
- 4. En el dibujo de la página siguiente identifique los datums Específicos. Explique cómo sería el simulador Datum.

REGLAS DE GD&T...REF. ASME Y14.5 - 2009

REGLA#1

Donde se especifique únicamente una tolerancia de tamaño, los límites de tamaño de una característica individual prescriben la extensión hasta la cual ésta puede variar tanto en su forma geométrica, así como en su tamaño.

LIMITACION DE LA REGLA #1

La regla # 1 no afecta la localización, orientación o relación establecida entre diversas características de tamaño.

EXCEPCIONES DE LA REGLA#1

La regla # 1 no aplica a partes no-rígidas ni a características definidas como tamaños comerciales (perfiles estructurales, tubos, barras, etc.)

VARIACIONES DE TAMAÑO

El tamaño real de una característica individual en cualquier sección transversal deberá estar dentro de la tolerancia especificada de tamaño.

VARIACIONES DE FORMA (PRINCIPIO DE ENVOLTURA)

Forma perfecta requerida en el límite de tamaño MMC

REGLA#2

La condición "no importa el tamaño de la característica/no importa la frontera de material" (RFS/RMB), se aplica con respecto a la tolerancia individual (RFS), referencia datum (RMB) o ambos, cuando no se especifique ningún modificador de material M o L . MMC/MMB o LMC/LMB debe ser especificado en caso de así requerirse.

TOLERANCIAS GEOMÉTRICAS

Tenemos catorce símbolos de características geométricas. Estos son usados para denotar los diferentes tipos de tolerancias:

- La forma
- El perfil
- La orientación
- La localización
- El cabeceo

La tabla de la parte inferior es comúnmente usada para indicar los símbolos.

	Tolerancia	Control Geométrico	Símbolo	
Características	Forma	Rectitud		
Individuales		Planitud		
		Circularidad	0	
		Cilindricidad	\nearrow	
Características		Perfil de una Línea	$\overline{}$	
relacionadas o	Perfil	Perfil de una		
individuales		Superficie		
	Orientación	Angularidad		
		Perpendicularidad		
Característica		Paralelismo	//	
relacionada	Localización	Posición		
Totalorida	Localización	Concentricidad		
		Simetría	-	
	Cabeceo (Runout)	Cabeceo circular	1	
		Cabeceo Total	1 1	

TOLERANCIA DE FORMA

APLICACIÓN

Las tolerancias de forma se aplican a características o elementos simples (individuales) de una característica, en especial para controlar:

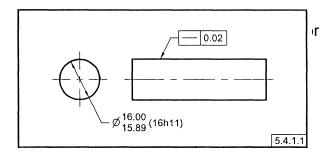
	Rectitud
	Planitud
\bigcirc	Circularidad
\mathcal{O}	Cilindricidad

Las tolerancias de forma no están relacionadas a datums

RECTITUD

DEFINICIÓN

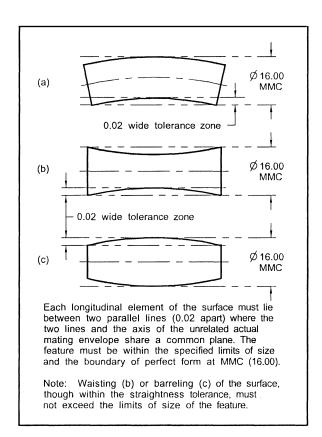
La rectitud en una condición donde:


- 1. Un elemento de una superficie plana o circular es una línea recta.
 - Cada elemento longitudinal de la superficie debe estar comprendido entre dos líneas paralelas, separadas por la cantidad especificada en la tolerancia.
 - RFS está implícito.
 - No debe violarse la forma perfecta de la frontera a MMC.
 - No se permiten datums de referencia.

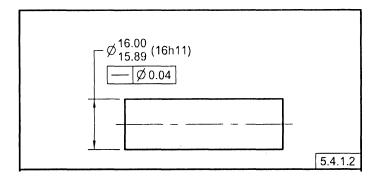
2. Un eje, para una característica de tamaño cilíndrica, es una línea recta.

- La línea media derivada de una característica de tamaño cilíndrica debe estar comprendida dentro de la zona de tolerancia cilíndrica especificada.
- Se aplica RFS o MMC.
- Se puede sobrepasar la frontera de forma perfecta a MMC
- No se permiten datums de referencia

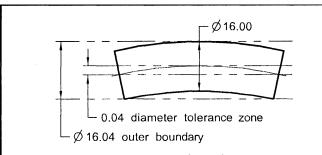
ESPECIFICACIÓN DE RECTITUD DE UN ELEMENTO DE SUPERFICIE CIRCULAR - RFS


ESTO EN EL DIBUJO

SIGNIFICA ESTO


Debido a que la tolerancia de tamaño debe ser verificada primero, puede suceder que no se disponga de toda la tolerancia de rectitud en el caso de elementos opuestos en piezas que han sufrido deformaciones cóncavas (b) o convexas (c) en su superficie.

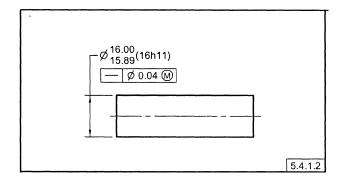
Se debe tener una forma perfecta en la frontera circular cuando está a MMC.


ESPECIFICACIÓN DE RECTITUD DE UN EJE - RFS

ESTO EN EL DIBUJO

Cuando se requiera, la tolerancia de rectitud puede ser mayor que la tolerancia de tamaño.

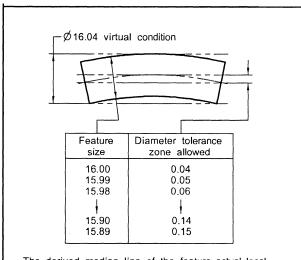
SIGNIFICA ESTO


The derived median line of the feature's actual local size must lie within a cylindrical tolerance zone of 0.04 diameter, regardless of the feature size. Each circular element of the surface must be within the specified limits of size.

La tolerancia de tamaño se debe verificar primero.

El efecto conjunto de la variación de tamaño y forma produce una frontera externa máxima igual al tamaño en la condición MMC más la tolerancia de rectitud. Esta frontera excede el tamaño MMC y por ello no aplica la regla # 1

ESPECIFICACIÓN DE RECTITUD DE UN EJE - MMC

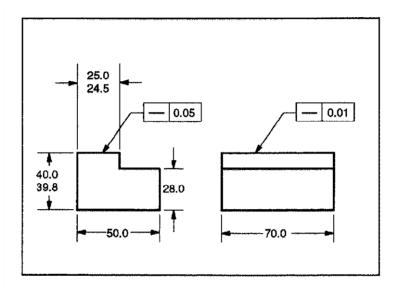

ESTO EN EL DIBUJO

Cuando se requiera, la tolerancia de rectitud puede ser mayor que la tolerancia de tamaño.

Al especificar MMC como un modificador, se permite una tolerancia de rectitud adicional (bonus)

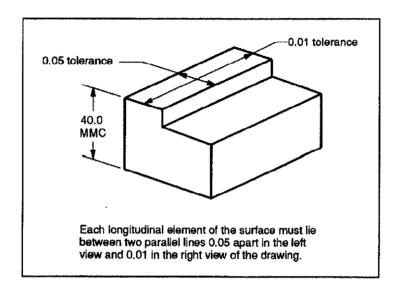
SIGNIFICA ESTO

The derived median line of the feature actual local sizes must lie within a cylindrical tolerance zone of 0.04 diameter at MMC. As each actual local size departs from MMC, an increase in the local diameter of the tolerance cylinder is allowed which is equal to the amount of such departure. Each circular element of the surface must be within the specified limits of size.

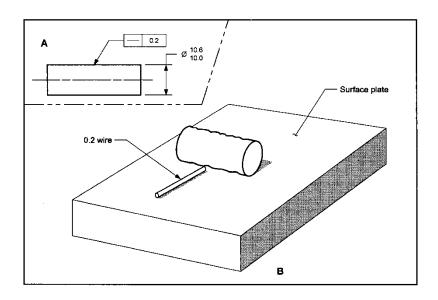

La tolerancia de tamaño debe verificarse primero.

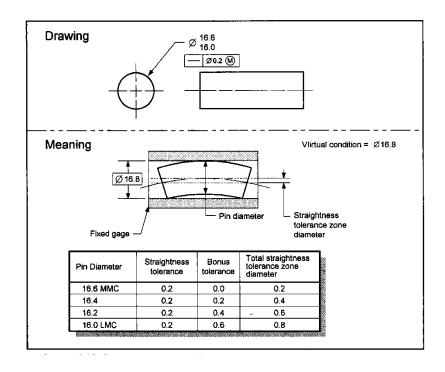
El efecto colectivo del tamaño y la variación de forma produce una condición virtual igual al tamaño MMC más la tolerancia de rectitud.

Esta frontera excede el límite de tamaño MMC, por lo que la regla # 1 no aplica


ESPECIFICACIÓN DE RECTITUD DE UNA SUPERFICIE NO CIRCULAR

ESTO EN EL DIBUJO

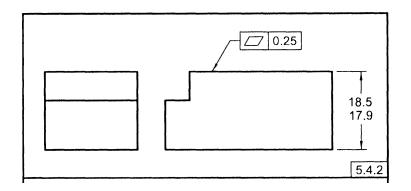

La tolerancia de rectitud debe ser menor que la tolerancia de tamaño y aplicarla únicamente en la vista donde aparece la superficie como una línea. Sin embargo, una tolerancia puede ser aplicada por cada vista si es requerido.


SIGNIFICA ESTO

Cuando una tolerancia de rectitud es especificada en cada vista, cada una de ellas debe ser verificada en forma separada. La característica de tamaño debe de estar dentro de una frontera de forma perfecta a MMC, a menos que se utilice el modificador de "independencia" en la dimensión de la característica de tamaño.

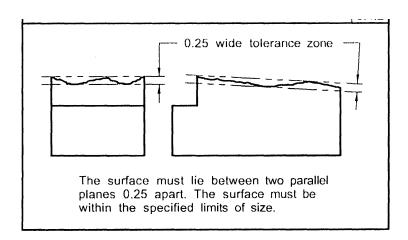
PRINCIPIOS DE MEDICIÓN DE RECTITUD

PLANITUD


DEFINICIÓN

Es una condición donde:

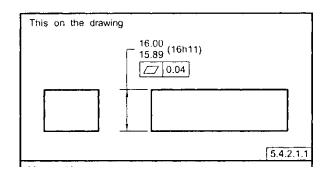
- 1. Todos los puntos de una superficie están en un plano.
 - Cada punto de la superficie debe estar entre dos planos paralelos separados por la cantidad de tolerancia especificada para Planitud.
 - RFS está implícito.
 - No debe violarse la forma perfecta de la frontera a MMC
 - No se permite el uso de datums de referencia.
- 2. Todos los puntos del plano medio derivado están el mismo plano.
 - Cada punto del plano medio derivado debe estar dentro de la zona de tolerancia definida por dos planos paralelos separados por la cantidad de tolerancia especificada para Planitud.
 - Se aplica RFS o MMC.
 - Se puede sobrepasar la frontera de forma perfecta a MMC.
 - No se permite el uso de datums de referencia.


ESPECIFICACIÓN DE PLANITUD DE UNA SUPERFICIE

ESTO EN EL DIBUJO

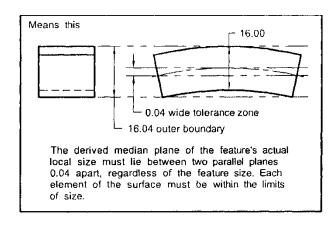
La tolerancia de Planitud debe ser menor que la tolerancia de tamaño

SIGNIFICA ESTO



La tolerancia de tamaño debe ser verificada primero.

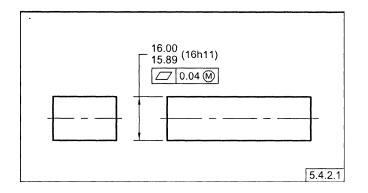
La característica de tamaño debe estar dentro de la frontera de forma perfecta MMC.


ESPECIFICACIÓN DE PLANITUD DEL PLANO MEDIO DERIVADO - RFS

ESTO EN EL DIBUJO

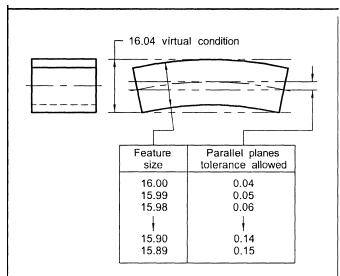
Cuando se requiera, la tolerancia de Planitud puede ser mayor que la tolerancia de tamaño.

SIGNIFICA ESTO



La tolerancia de tamaño debe ser verificada primero.

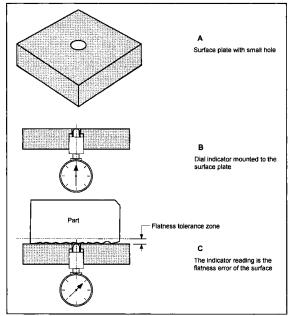
El efecto conjunto de la variación de tamaño y forma produce una frontera externa máxima igual al tamaño en la condición MMC más la tolerancia de Planitud. Esta frontera excede el tamaño MMC y por ello no aplica la regla # 1

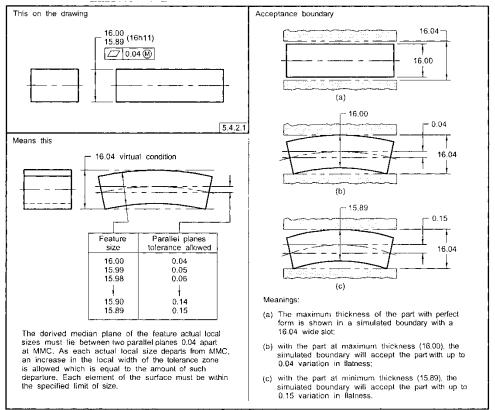

ESPECIFICACIÓN DE PLANITUD DEL PLANO MEDIO DERIVADO - MMC

ESTO EN EL DIBUJO

Cuando se requiera, la tolerancia de Planitud puede ser mayor que la tolerancia de tamaño.

SIGNIFICA ESTO



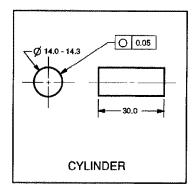

The derived median plane of the feature actual local sizes must lie between two parallel planes 0.04 apart at MMC. As each actual local size departs from MMC, an increase in the local width of the tolerance zone is allowed which is equal to the amount of such departure. Each element of the surface must be within the specified limit of size.

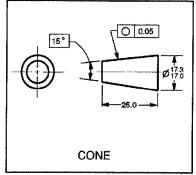
La tolerancia de tamaño debe ser verificada primero.

El efecto conjunto de la variación de tamaño y forma produce una condición virtual igual al tamaño en la condición MMC más la tolerancia de Planitud. Esta frontera excede el tamaño MMC y por ello no aplica la regla # 1

PRINCIPIOS DE MEDICIÓN DE PLANITUD

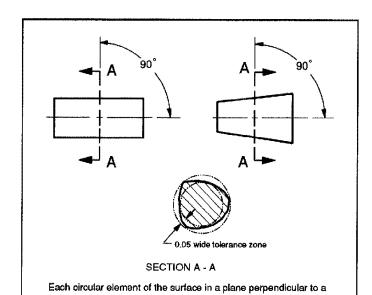
CIRCULARIDAD


DEFINICIÓN


Es una condición de una superficie de revolución donde:

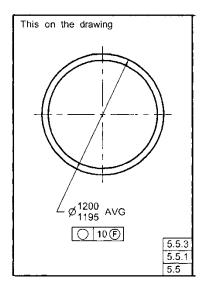
- 1. Todos los puntos de la superficie de un cilindro o cono intersectada por cualquier plano perpendicular al eje común son equidistantes a dicho eje.
- 2. Todos los puntos en la superficie de una esfera intersectadas por cualquier plano que pasa a través de un centro común son equidistantes de dicho centro.
 - Cada elemento circular de la superficie debe estar entre dos círculos concéntricos, uno tendrá un radio más grande que el otro por una cantidad igual a la tolerancia especificada.
 - RFS está implícito.
 - No se permite el uso de datums de referencia.
 - No debe de ser violada la frontera de forma perfecta a MMC.

ESPECIFICACIÓN DE CIRCULARIDAD PARA UN CILINDRO O UN CONO


ESTO EN EL DIBUJO

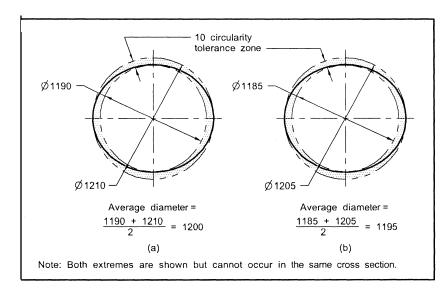
La tolerancia de circularidad debe ser menor que la tolerancia de tamaño

SIGNIFICA ESTO


common axis must lie between two concentric circles, one having a radius 0.05 greater than the other. Additionally, each circular element of the surface must be within the specified limits of size.

La tolerancia de tamaño debe ser verificada primero.

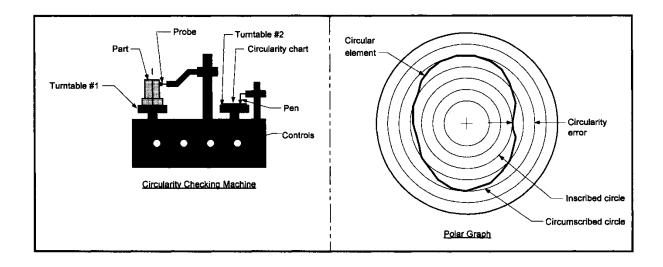
La característica de tamaño debe estar dentro de la frontera de forma perfecta MMC.

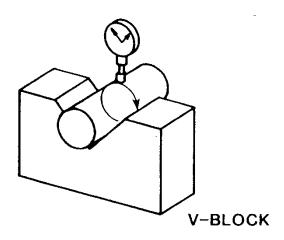

ESPECIFICACIÓN DE CIRCULARIDAD PARA PARTES NO RIGIDAS

ESTO EN EL DIBUJO

La tolerancia de circularidad puede ser mayor que la tolerancia de tamaño

SIGNIFICA ESTO




La sección transversal debe ser verificada primeramente.

Un mínimo de 2 mediciones a 90º deben tomarse para obtener un promedio, en cada sección.

La diferencia entre la medida mayor y menor, para una misma sección, no debe ser más de dos veces la tolerancia de circularidad

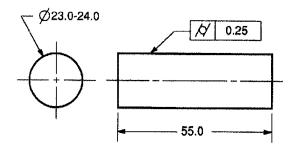
PRINCIPIOS DE MEDICIÓN DE CIRCULARIDAD

CILINDRICIDAD

DEFINICIÓN

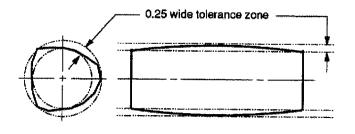
Es una condición de una superficie de revolución donde:

Todos los puntos de la superficie son equidistantes de un eje común.


- La superficie debe estar entre dos cilindros concéntricos, uno tendrá un radio más grande que el otro por una cantidad igual a la tolerancia especificada.
- RFS está implícito
- No se permite el uso de datums de referencia
- No debe de ser violada la frontera de forma perfecta a MMC.

Nota:

La tolerancia de cilindricidad es un control compuesto de forma, la cual incluye rectitud, conicidad y circularidad.

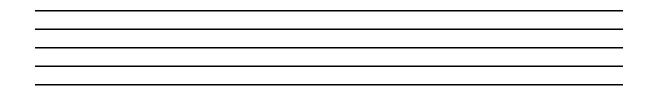

ESPECIFICACIÓN DE CILINDRICIDAD PARA UN CILINDRO

ESTO EN EL DIBUJO

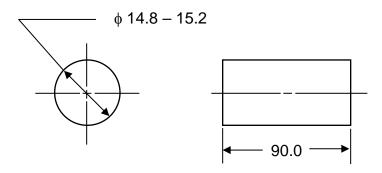
La tolerancia de cilindricidad debe ser menor que la tolerancia de tamaño

SIGNIFICA ESTO

The cylindrical surface must lie between two concentric cylinders, one having a radius 0.25 larger than the other. Additionally, the surface must be within the specified limits of size.


La tolerancia de tamaño debe ser primeramente verificada. La característica de tamaño debe estar dentro de la frontera circular de forma perfecta MMC.

ACTIVIDAD DE APRENDIZAJE - TOLERANCIAS DE FORMA


1. Mencione y dibuje los cuatro símbolos de características geométricas que nunca se relacionan a un datum.

2. ¿Hasta dónde se extiende, en cada una de ellas, el control de forma para la dimensión de tamaño?

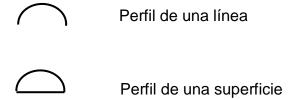
- 3. La tolerancia _____ especifica una zona dentro de la cual debe estar el eje o un elemento de línea de la superficie referida.
- 4. En el siguiente dibujo, agregue un marco de control de característica para especificar una rectitud de superficie de 0.1

5.	Para el dibujo anterior, REQUIRED FOR FEA geométrica permitida p	TURES OF SIZE	AT MMC". Deter	rmine la toler	
	Tamaño posible pro φ15.2 MMC	oducido	Tolerancia g	geométrica p	ermitida –
	15.1				_
	15.0				_
	14.9				_
	14.8				_
6.	Dado el dibujo siguient para especificar una to tolerancia aplica a la lo	lerancia de rectit	ud de 0.1 en la s		
7.	Para el dibujo anterior, individuales?	¿la tolerancia co	ntrola sólo elem	entos de líne	a
		SI		_ NO	
9.	Cuando se especifica perfecta a MMC?	rectitud en el eje,	¿se puede exce	der el límite	de forma
		SI		NO	
10	.¿Esto provocará una c	ondición virtual?	SI		_ NO

Lectura de Planos y GD&T

11. Para controlar el plano central o eje de la p característica es agregado a la	
12. ¿Puede la rectitud en el eje ser especificada	a en base RFS o MMC?
SI	NO
13. ¿Puede la rectitud por unidad de medición s variación abrupta dentro de una longitud rel	•
SI	NO
Si la respuesta es SI, ¿qué tipo de marco de co Dibuje el marco de control de característica y e	
14. Una zona de tolerancia planos paralelos dentro del cual debe de es	
15. Dado el siguiente dibujo; especifique un rec superficie de la base.	querimiento de Planitud de 0.08 en la
16. ¿La rectitud también es controlada por Plar Si la respuesta es SI, ¿a qué se extiend	

Lectura de Planos y GD&T
17. La tolerancia de es caracterizada por cualquier sección transversal tomando la perpendicular al eje de un cilindro, cono o a través de una esfera.
18. ¿En qué dirección se mide la circularidad o redondez?
19. Defina la zona de tolerancia de la circularidad o redondez.
20. Dibuje unas vistas apropiadas y muestre el método de conectar una especificación de marco de control a una tolerancia de circularidad de 0.01 para un perno.
21. ¿Cuál es la diferencia entre la tolerancia de circularidad o redondez y la tolerancia de cilindricidad?
22. ¿La conicidad es controlada por cilindricidad? SI NO
23. ¿Qué tolerancia geométrica requiere un control de más precisión: cilindricidad o circularidad?
23. En el dibujo 005-1166-00 de apéndice, identifique todas las tolerancias geométricas de la familia de forma y explique su significado y forma de medirlas


TOLERANCIAS DE PERFIL

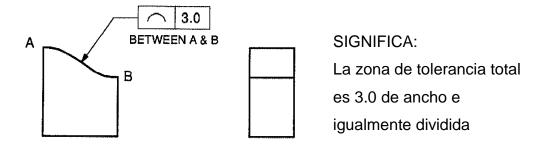
APLICACIÓN

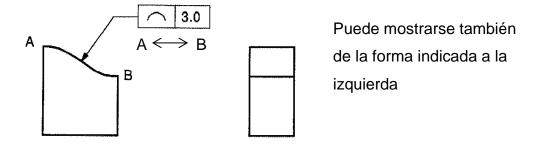
La tolerancia de perfil se aplica a elementos lineales de una característica sencilla (similar a rectitud) o a todos los puntos de una característica sencilla (similar a Planitud).

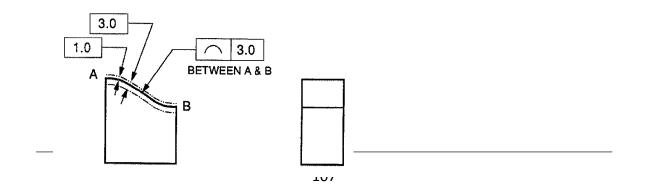
El perfil puede ser usado para controlar forma o combinaciones de tamaño, forma y orientación. Cuando es usado como refinamiento de tamaño, la tolerancia de perfil debe estar contenida dentro de la tolerancia de tamaño.

Las tolerancias de perfil son:

PERFIL DE UNA LÍNEA

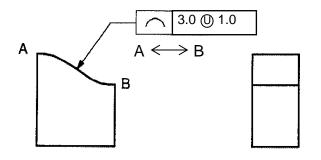

DEFINICIÓN

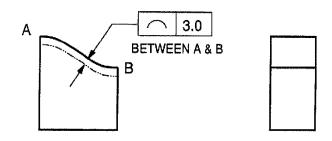

El perfil de una línea es una condición en donde:


Un elemento de una superficie de forma arbitraria es una línea de contorno que consiste en arcos, curvas, líneas rectas o segmentos irregulares de línea, o cualquier combinación de éstos.

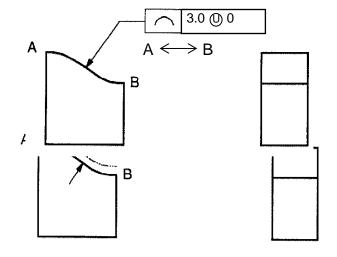
- Se usan dimensiones básicas para definir el perfil verdadero.
- La zona de tolerancia es bidimensional, se extiende a través de la longitud diseñada de la característica considerada.
- Cada elemento lineal de la superficie debe estar dentro de una zona de tolerancia uniforme a través del perfil verdadero
- RFS está implícito.

ESPECIFICANDO EL PERFIL DE UNA LÍNEA – ZONA DE TOLERANCIA BILATERAL

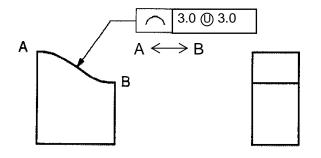



SIGNIFICA:

La zona de tolerancia es 3.0 de ancho y no esta igualmente dividida.

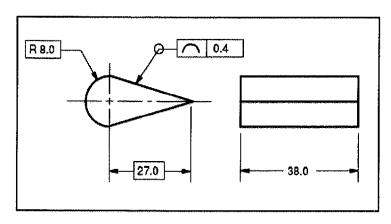

Puede mostrarse también de la forma indicada a la izquierda

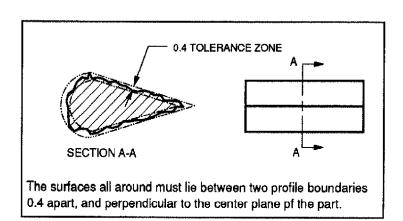
ESPECIFICANDO PERFIL DE LÍNEA - ZONA DE TOLERANCIA UNILATERAL


SIGNIFICA:

La zona tolerancia total es 3.0
de anche y esta per completo
Puede mostrarse también
de la forma indicada a la
izquierda

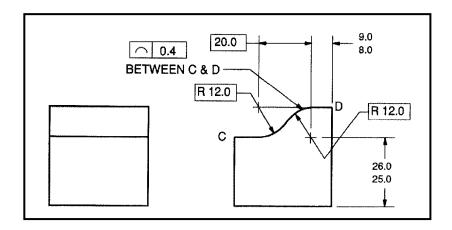
SIGNIFICA:

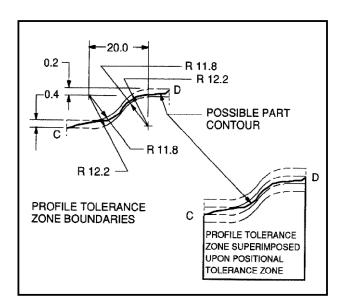

La zona de tolerancia es 3.0 de ancho y esta completamente fuera de la zona de material.


Puede mostrarse también de la forma indicada a la izquierda

ESPECIFICANDO PERFIL DE LÍNEA - TODO EL CONTORNO

ESTO EN EL DIBUJO


SIGNIFICA ESTO


La zona de tolerancia se extiende a la intersección de las líneas frontera.

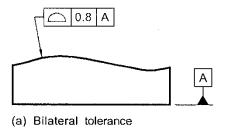
ESPECIFICANDO PERFIL DE LÍNEA Y CONTROL DE TAMAÑO

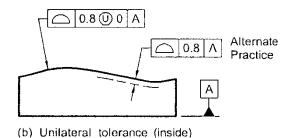
ESTO EN EL DIBUJO

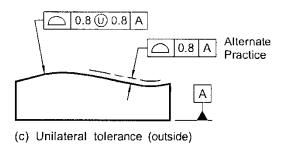
SIGNIFICA ESTO

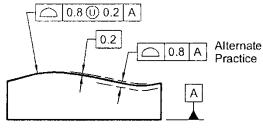
Cada línea del elemento de la superficie entre C & D, en cualquier sección, debe estar dentro de la frontera del perfil.

PERFIL DE UNA SUPERFICIE

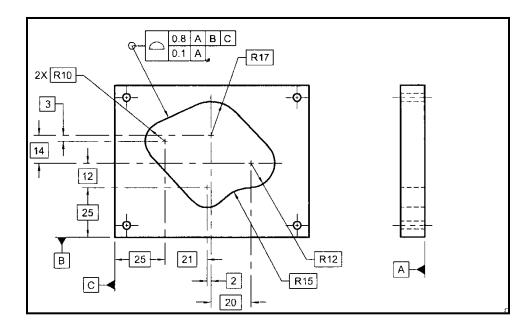

DEFINICIÓN

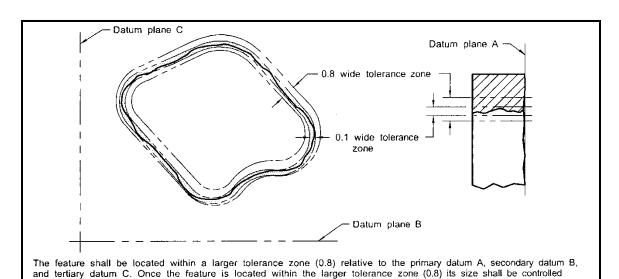

Es una condición donde:


Todos los puntos de una superficie de forma arbitraria, están en dicha superficie, la cual consiste de arcos, curvas, rectas o segmentos lineales irregulares o cualquier combinación de éstos.


- Las dimensiones básicas son usadas para definir el perfil verdadero
- La zona de tolerancia es tridimensional y se extiende a través de lo ancho y largo (o circunferencia) de la superficie de la característica considerada.
- Cada punto de la superficie debe estar dentro de una zona de tolerancia uniforme, definida a través del perfil verdadero.
- RFS está implícito.

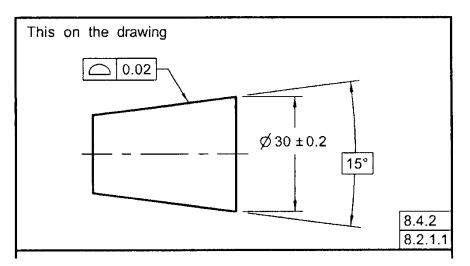
ESPECIFICANDO UNA ZONA DE TOLERANCIA PARA EL PERFIL DE UNA SUPERFICIE

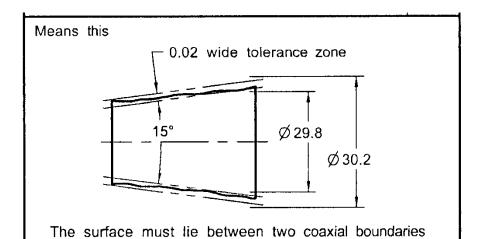




ESPECIFICANDO PERFIL DE UNA SUPERFICIE - CARACTERÍSTICA DE TAMAÑO IRREGULAR

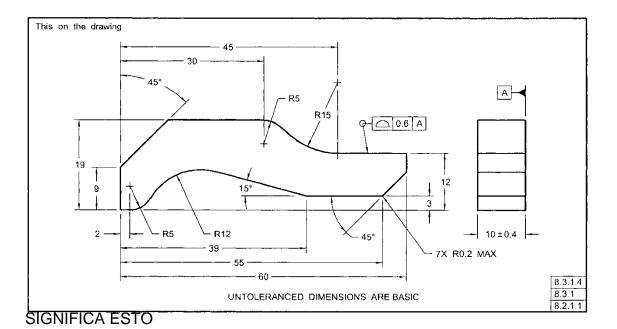
ESTO EN EL DIBUJO

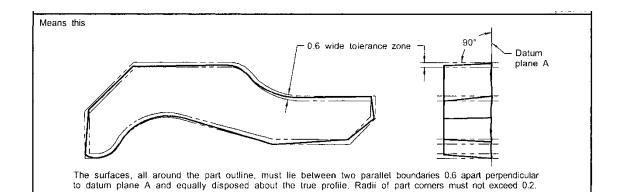

SIGNIFICA ESTO


relative to the basic feature defining dimensions and to the primary datum A within the smaller tolerance zone (0.1).

ESPECIFICANDO PERFIL DE UNA SUPERFICIE - CARACTERÍSTICA CÓNICA

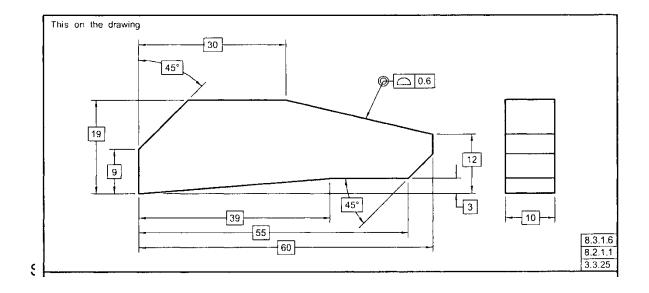
ESTO EN EL DIBUJO

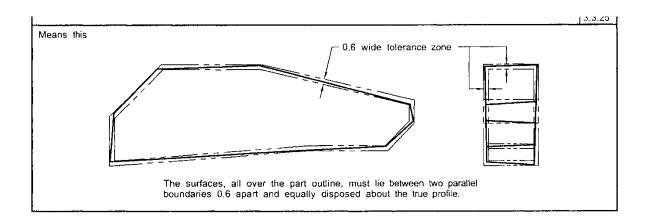

La tolerancia de perfil debe ser menor que la tolerancia de tamaño.



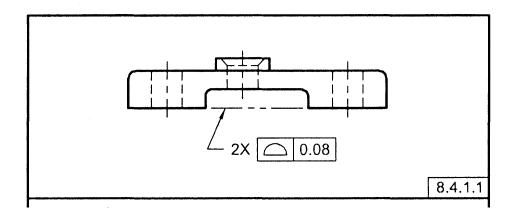
0.02 apart having an included angle of 15°. The surface must be within the specified limits of size.

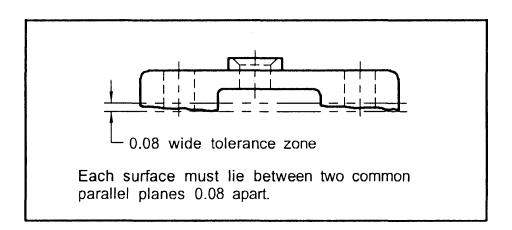
ESPECIFICANDO PERFIL DE UNA SUPERFICIE - TODO EL CONTORNO


ESTO EN EL DIBUJO



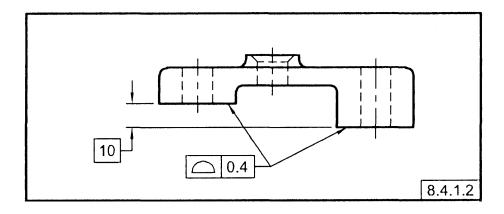
ESPECIFICANDO PERFIL DE UNA SUPERFICIE - TODA LA CUBIERTA


ESTO EN EL DIBUJO

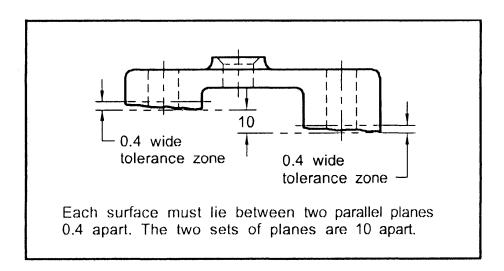


ESPECIFICANDO PERFIL DE UNA SUPERFICIE - ALINEAMIENTO DE SUPERFICIES COPLANARES

ESTO EN EL DIBUJO

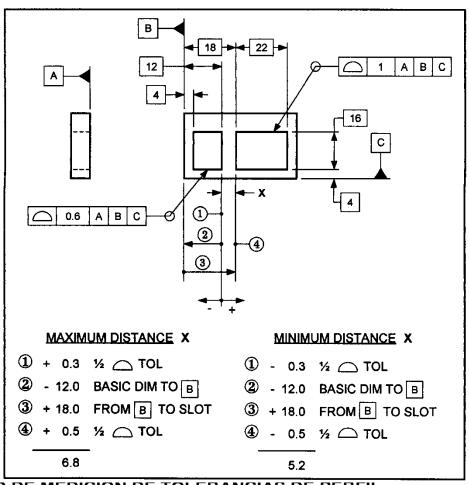


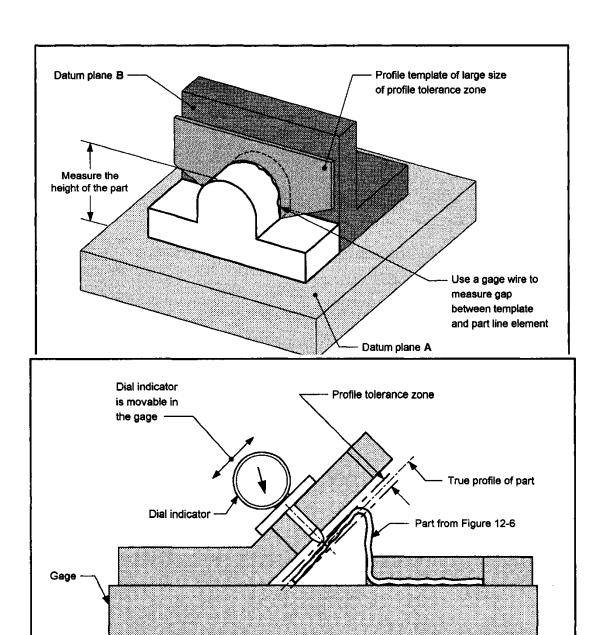
SIGNIFICA ESTO



ESPECIFICANDO PERFIL DE UNA SUPERFICIE - ALINEAMIENTO DE SUPERFICIES MULTIPLES

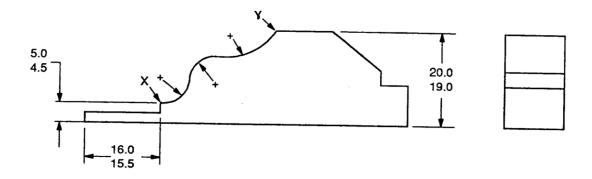
ESTO EN EL DIBUJO


SIGNIFICA ESTO


ACUMULACION DE TOLERANCIAS USANDO TOLERANCIAS DE PERFIL

El cálculo de alguna dimensión, resultante de la acumulación de tolerancias de perfil, se puede realizar en la forma mostrada. Se supone, en los cálculos siguientes, que la tolerancia de perfil es bilateral – uniformemente distribuida.

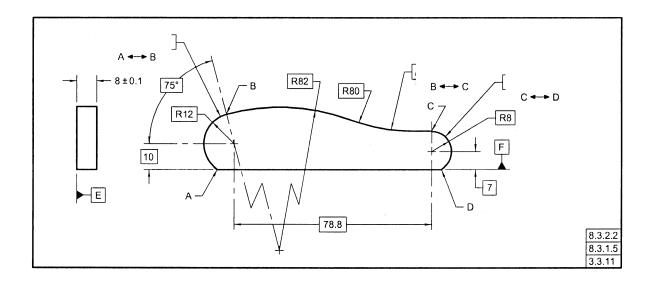
Cuando resuelva para la distancia "X" máxima, se suman la mitad de los valores de tolerancia de forma a las dimensiones básicas que definen el valor de "X". Para resolver para la "X" mínima, se restan la mitad de los valores de la tolerancia de forma a las dimensiones básicas que definen el valor de "X".


PRINCIPIO DE MEDICION DE TOLERANCIAS DE PERFIL

ACTIVIDAD DE APRENDIZAJE - TOLERANCIAS DE PERFIL

Nombra y dibuja los dos símbolos de las características geométricas que se utilizan con o sin referencia de datums.
 Una tolerancia de _______ especifica un límite uniforme a lo largo del perfil verdadero dentro del cual deben estar los elementos de la superficie.
 ¿Puede la tolerancia de perfil utilizarse para controlar la forma y orientación de una superficie plana?
 SI ______ NO
 Una zona de tolerancia de perfil bilateral uniformemente distribuida está implícita a menos que se especifique lo contrario.
 ______ SI _____ NO

5. Dado el siguiente dibujo, anexa un marco de control de característica para especificar un perfil de línea con una tolerancia unilateral de 0.6 que se aplique entre los puntos X y Y. No se requieren datums.



6. En el dibujo anterior, ¿qué tipo de dimensiones deben utilizarse para especificar los valores numéricos para los tres radios y sus localizaciones respectivas?

Lectura de Planos y GD&T

7.	¿Puede utilizarse el perfil de superficie para controlar el ángulo de una superficie inclinada en relación a una referencia datum?
	SI NO
8.	¿Puede utilizarse el perfil de superficie para controlar la forma y orientación de una superficie cónica?
	SI NO
9.	Dado el siguiente dibujo, anexa un marco de control de característica para especificar un perfil de superficie con una tolerancia bilateral igual de 0.4 de todo el contorno, relacionado con el datum A. Utiliza el símbolo de todo el contorno.
	12.0 R4.0 R2.0 R2.0 3 PLACES
10	. Esboza la zona de tolerancia en el dibujo del problema 9.
11	. ¿Todas las dimensiones mostradas en el dibujo anterior deberían especificarse como dimensiones básicas?
	SI NO
Ex	plica tu respuesta.

- 12. Dado el siguiente dibujo, adjunta marcos de control de características para especificar una tolerancia de perfil de superficie bilateral-uniforme para la parte mostrada. Las tolerancias a aplicar son:
 - a) 0.12 entre puntos A y B
 - b) 0.1 entre puntos B y C
 - c) 0.05 entre puntos C y D
 - d) Especifica las referencias datum en los marcos de control de característica
 - e) Especifica una tolerancia de 0.06 para controlar la calidad de superficie del datum E. El datum E es la característica datum primaria.

TOLERANCIA DE ORIENTACIÓN

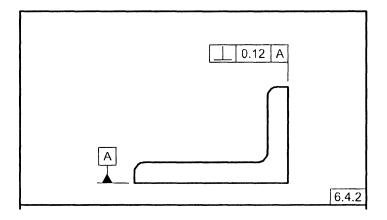
APLICACIÓN

Las tolerancias de orientación se aplican a características relacionadas o a los elementos de línea de una característica relacionada. La característica considerada se relaciona a uno, dos o tres características datum para estabilizar la zona de tolerancia en más de una dirección

Las tolerancias de orientación son:

 Perpendicularidad 	
---------------------------------------	--

PERPENDICULARIDAD

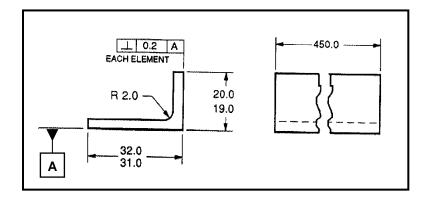

DEFINICIÓN

Es una condición donde:

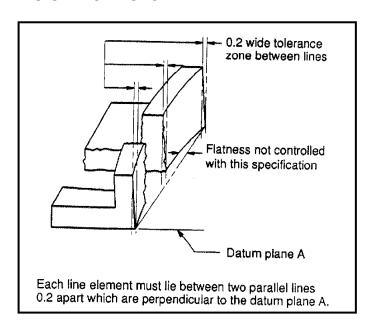
- 1. Una superficie, un elemento de línea de una superficie, un eje o un plano central tiene una orientación implícita de 90° con respecto al datum de referencia.
- 2. La tolerancia especifica uno de los casos siguientes:
 - Una zona de tolerancia definida por dos planos paralelos, son perpendiculares a uno o más planos o ejes datum, dentro de la cual debe estar la superficie o plano central de la característica considerada.
 - Una zona de tolerancia definida por dos planos paralelos, son perpendiculares a uno o más planos o ejes datum, dentro de la cual debe estar el eje de la característica considerada.
 - Una zona de tolerancia cilíndrica perpendicular a uno o más planos o ejes datum, dentro de la cual debe estar el eje de la característica considerada.
 - Una zona de tolerancia definida por dos líneas paralelas, son perpendiculares a un plano o eje datum, dentro de la cual debe estar el elemento de línea de la superficie de la característica considerada.
- 3. La tolerancia controla Planitud dentro de la misma especificación cuando se aplica a superficies planas.
- 4. RFS está implícito


ESPECIFICACIÓN DE PERPENDICULARIDAD PARA UNA SUPERFICIE PLANA

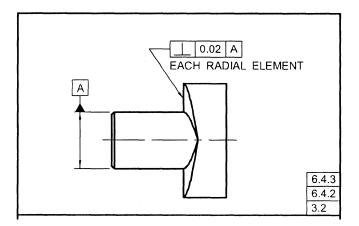
ESTO EN EL DIBUJO


La tolerancia de perpendicularidad debe ser menor que la tolerancia de tamaño.

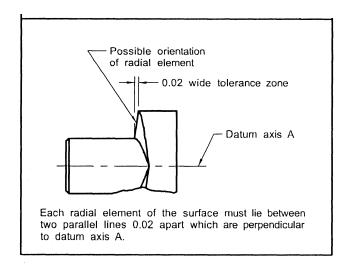
SIGNIFICA ESTO


ESPECIFICACIÓN DE PERPENDICULARIDAD PARA ELEMENTOS DE LINEA DE UNA SUPERFICIE

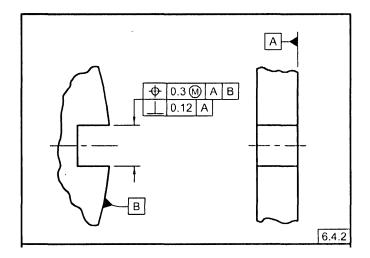
ESTO EN EL DIBUJO


La tolerancia de perpendicularidad debe ser menor que la tolerancia de tamaño.

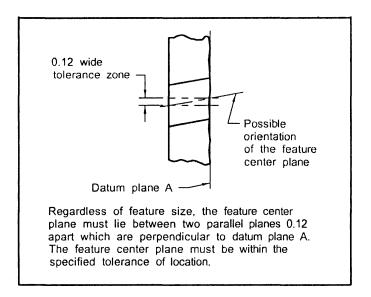
SIGNIFICA ESTO


ESPECIFICACIÓN DE PERPENDICULARIDAD PARA ELEMENTOS RADIALES DE UNA SUPERFICIE

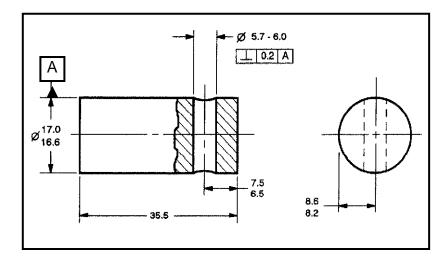
ESTO EN EL DIBUJO


La tolerancia de perpendicularidad debe ser menos que la tolerancia de tamaño.

SIGNIFICA ESTO

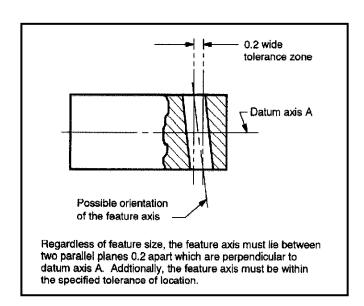

ESPECIFICACIÓN DE PERPENDICULARIDAD PARA UN PLANO CENTRAL

ESTO EN EL DIBUJO


La característica debe tener una tolerancia especificada para localización, y en seguida refinada con perpendicularidad

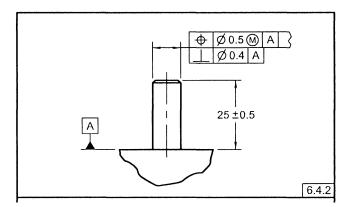
SIGNIFICA ESTO

ESPECIFICACIÓN DE PERPENDICULARIDAD PARA UN EJE - RFS

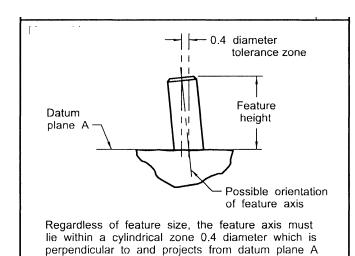

ESTO EN EL DIBUJO

La tolerancia de perpendicularidad aplica únicamente en la vista donde está especificada.

Requiere especificar una tolerancia de localización (no mostrada en este dibujo)


SIGNIFICA ESTO

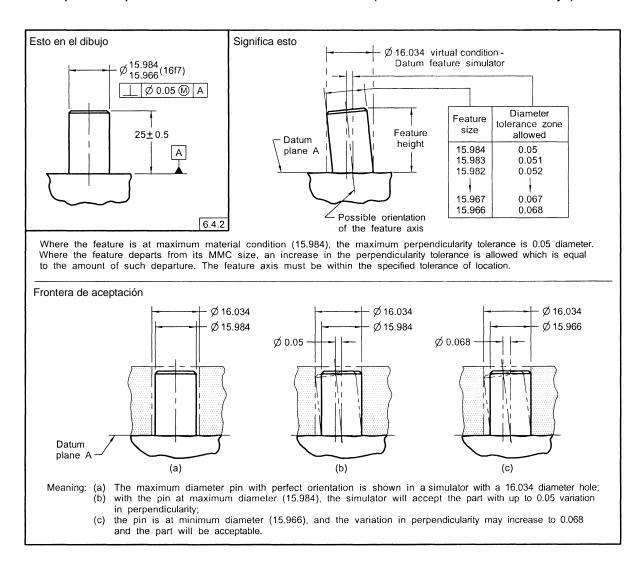
La tolerancia de tamaño y localización deben ser verificadas primero.


ESPECIFICACIÓN DE PERPENDICULARIDAD PARA UN EJE DE UN PERNO - RFS

ESTO EN EL DIBUJO

Requiere especificar una tolerancia de localización, primeramente.

SIGNIFICA ESTO



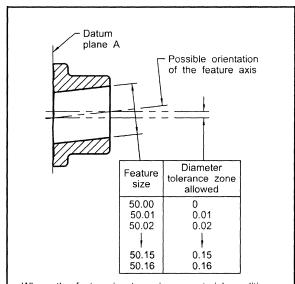
for the feature height. The feature axis must be within the specified tolerance of location.

Las tolerancias de tamaño y localización deben ser verificadas primero.

ESPECIFICACIÓN DE PERPENDICULARIDAD PARA UN EJE DE UN PERNO - MMC

Requiere especificar tolerancia de localización (no mostrada en este dibujo)

La tolerancia de tamaño y localización deben ser verificadas primero.


ESPECIFICACIÓN DE PERPENDICULARIDAD PARA UN EJE – CON TOLERANCIA CERO EN MMC

ESTO EN EL DIBUJO

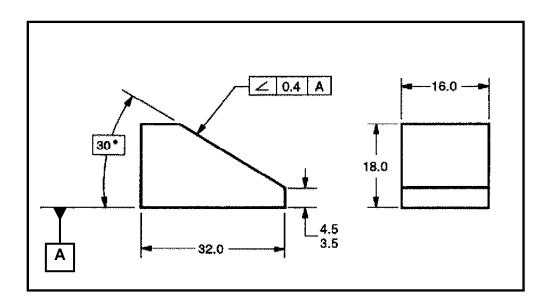
Este método puede ser usado donde no se permite variación de perpendicularidad a MMC

SIGNIFICA ESTO

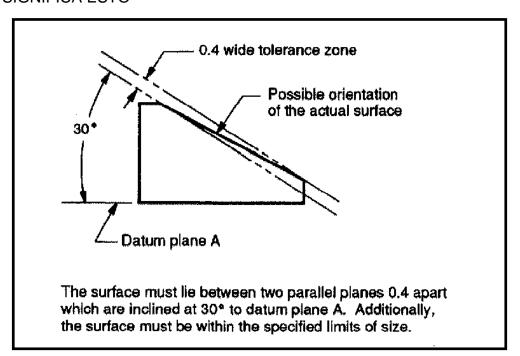
Where the feature is at maximum material condition (50.00), its axis must be perpendicular to datum plane A. Where the feature departs from MMC, a perpendicularity tolerance is allowed which is equal to the amount of such departure. The feature axis must be within the specified tolerance of location.

La tolerancia de tamaño y localización debe ser verificada primero.

ANGULARIDAD

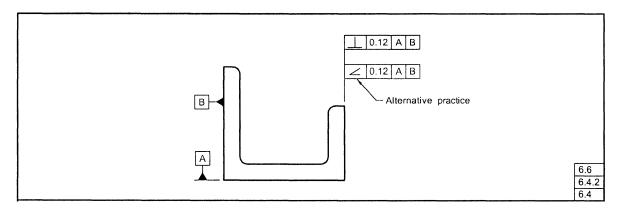

DEFINICIÓN

Es una condición donde:

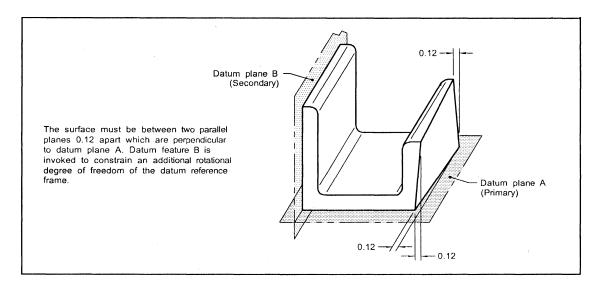

- Una superficie o eje está a un ángulo básico especificado (diferente a 90°) a partir del plano o eje datum.
- 2. La tolerancia especifica uno de los casos siguientes:
 - Una zona de tolerancia definida por dos planos paralelos orientados a un ángulo básico respecto a uno o más planos o ejes datum, dentro de la cual debe estar la superficie o plano central de la característica considerada.
 - Una zona de tolerancia definida por dos planos paralelos orientados a un ángulo básico respecto a uno o más planos o ejes datum, dentro de la cual debe estar el eje de la característica considerada.
 - Una zona de tolerancia cilíndrica orientada a un ángulo básico respecto a uno o más planos o ejes datum, dentro de la cual debe estar el eje de la característica considerada.
 - Una zona de tolerancia definida por dos líneas paralelas orientados a un ángulo básico respecto a un plano o eje datum, dentro de la cual debe estar el elemento de línea de la superficie de la característica considerada.
- 3. La tolerancia controla Planitud dentro de la misma especificación cuando se aplica a superficies planas.
- 4. RFS está implícito

ESPECIFICANDO ANGULARIDAD PARA UNA SUPERFICIE PLANA

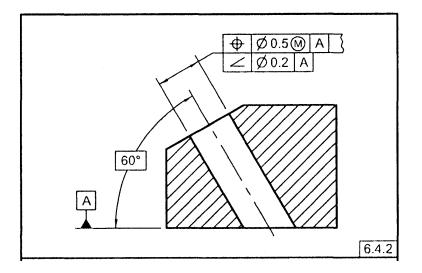
ESTO EN EL DIBUJO



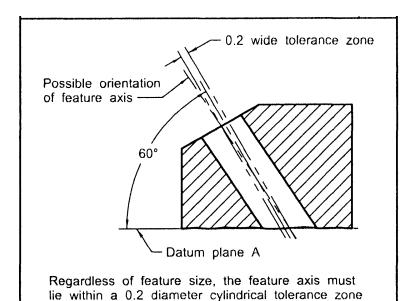
SIGNIFICA ESTO


ESPECIFICANDO ANGULARIDAD PARA UNA SUPERFICIE RELACIONADA A DATUMS PRIMARIOS, Y SECUNDARIOS

ESTO EN EL DIBUJO

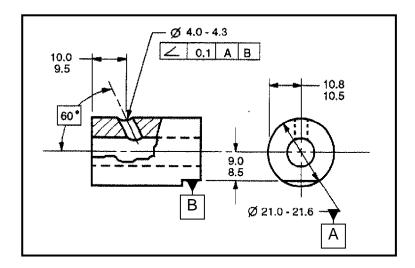

La tolerancia de Angularidad debe ser menor que la tolerancia de localización o tamaño

SIGNIFICA ESTO

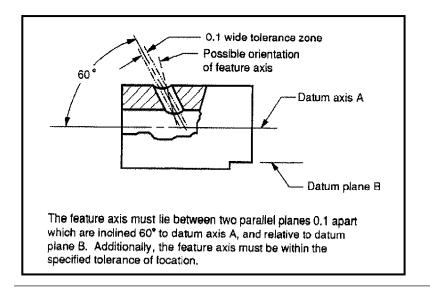

ESPECIFICANDO ANGULARIDAD PARA UN EJE - RFS

ESTO EN EL DIBUJO

La tolerancia de Angularidad aplica únicamente en la vista donde está especificada.


SIGNIFICA ESTO

inclined 60° to datum plane A. The feature axis must be within the specified tolerance of location.

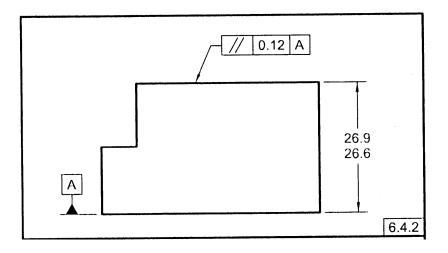

ESPECIFICANDO ANGULARIDAD PARA UNA EJE RELATIVO A DATUMS PRIMARIO Y SECUNDARIO - RFS

ESTO EN EL DIBUJO

La tolerancia de Angularidad aplica únicamente en la vista donde está especificada

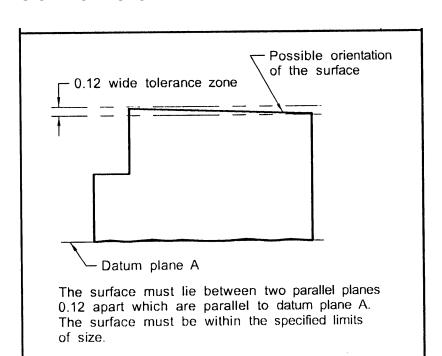
SIGNIFICA ESTO

PARALELISMO

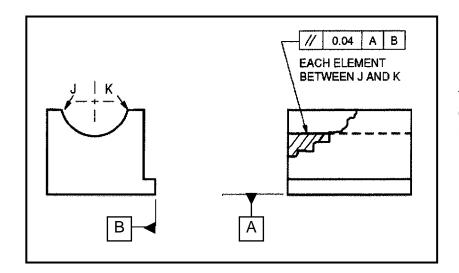

DEFINICIÓN

Es una condición donde:

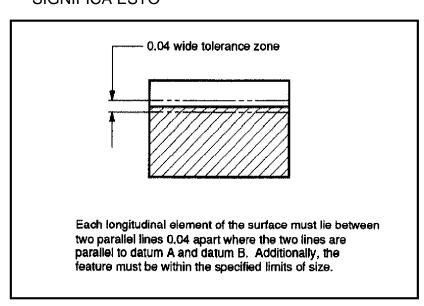
- 1. Una superficie es equidistante en todos los puntos desde un plano datum, o un eje es equidistante a través de su longitud a una superficie o un eje datum.
- 2. La tolerancia especifica uno de los casos siguientes:
 - Una zona de tolerancia definida por dos planos paralelos los cuales son también paralelos a uno o más planos o ejes datum; dentro de esta zona debe estar la superficie o plano central de la característica considerada.
 - Una zona de tolerancia definida por dos planos paralelos los cuales son también paralelos a uno o más planos o ejes datum; dentro de esta zona debe estar el eje de la característica considerada.
 - Una zona de tolerancia cilíndrica paralela a uno o más planos o ejes datum, dentro de la cual debe estar el eje de la característica considerada.
 - Una zona de tolerancia definida por dos líneas paralelas las cuales son también paralelas a un plano o eje datum, dentro de la cual debe estar el elemento de línea de la superficie de la característica considerada.
- La tolerancia controla Planitud dentro de la misma especificación cuando se aplica a superficies planas.
- 4. RFS está implícito


ESPECIFICANDO PARALELISMO PARA UNA SUPERFICIE PLANA

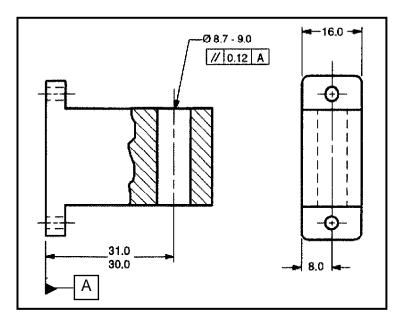
ESTO EN EL DIBUJO


La tolerancia de paralelismo debe ser menor que la tolerancia de tamaño

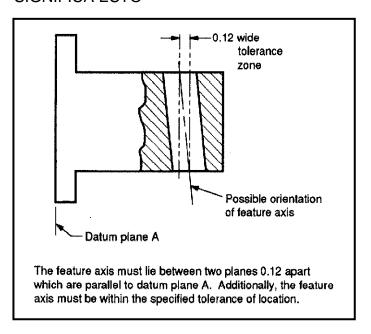
SIGNIFICA ESTO


ESPECIFICANDO PARALELISMO PARA ELEMENTOS DE LINEA DE UNA SUPERFICIE RELACIONADA A DATUMS PRIMARIO Y SECUNDARIO

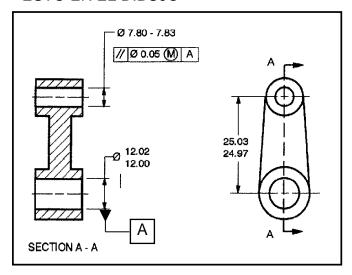
ESTO EN EL DIBUJO


La característica debe tener una tolerancia especificada para localización

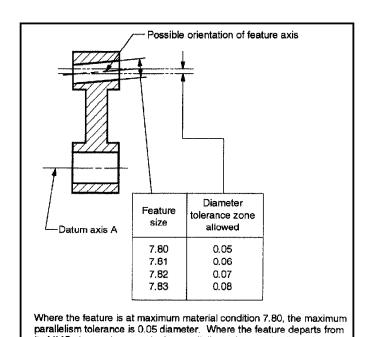
SIGNIFICA ESTO


ESPECIFICANDO PARALELISMO PARA UN EJE RELACIONADO A UN DATUM PRIMARIO

ESTO EN EL DIBUJO


La característica debe tener una tolerancia especificada para localización

SIGNIFICA ESTO


ESPECIFICANDO PARALELISMO PARA UN EJE A MMC

ESTO EN EL DIBUJO

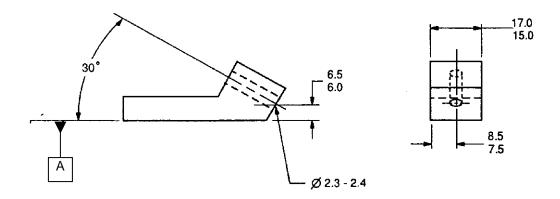
La tolerancia de paralelismo debe ser menor que la tolerancia de localización entre ejes.

SIGNIFICA ESTO

its MMC size, an increase in the parallelism tolerance is allowed which is equal to the amount of such departure. Additionally, the feature

axis must be within the specified tolerance of location.

ACTIVIDAD DE APRENDIZAJE – TOLERANCIAS DE ORIENTACIÓN


1.	Nombra y dibuja los tres símbolos de tolerancias geométricas de orientación para características que requieren datums de referencia		
_			
2.	Una tolerancia controla la relación de "actitud" de unas características con respecto a otras.		
3.	Describe las formas de las zonas de tolerancia utilizadas con tolerancias de orientación		
	a. ————————————————————————————————————		
	b. —		
	c. —		
	d		
4.	Las tolerancias de orientación aplicadas a una superficie también controlan la de la superficie, en la extensión del valor de la tolerancia		
	de orientación establecida.		
5.	Una tolerancia de perpendicularidad puede especificarse para controlar		
	elementos de línea de una superficie. SINO		
6.	Los elementos radiales de una superficie pueden controlarse con una tolerancia		
	de perpendicularidad SINO		

Lectura de Planos y GD&T

7.	Una característica simétrica tal como una ranura, puede especificarse como perpendicular a un plano datum y verificarse mediante un calibrador fijo. Para esta aplicación la característica de tamaño, en su		
	central, y especificada a condición de material, se controla		
	dentro de una zona de tolerancia definida por dos planos paralelos, los cuales		
están al plano datum referido. La tolerancia cre			
	conforme el tamaño de la ranura crece.		
8.	La condición resultante de la pregunta 8 se refiere a la		
	y debe ser considerada en los		
	acumulamientos de tolerancia		
9.	El eje de un perno puede especificarse como perpendicular a un plano datum.		
	La forma de la zona de tolerancia es		
10. De la pregunta 10, puede ganarse tolerancia de perpendicularidad adicional,			
	especificando un símbolo después de la tolerancia		
	geométrica.		
11	.Una zona de tolerancia de se establece por dos planos		
	paralelos orientados en cualquier ángulo básico especificado, diferente a 90°,		
	con respecto a un plano o eje datum. El ángulo especificado debe ser una		
	dimensión y debe estar medido desde el		
	de referencia.		

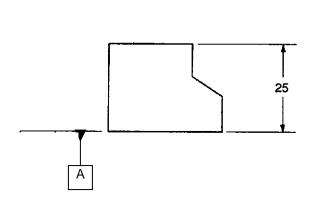
Lectura de Planos y GD&T

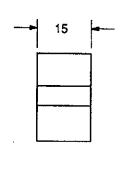
12. Dado el siguiente dibujo, anexa un marco de control de característica para especificar una tolerancia de Angularidad de 0.2 (RFS) relativa a la característica datum A. Indica la dimensión básica.

Esboza la zona de tolerancia en el dibujo y descríbela.

13. En el dibujo anterior, la tolerancia de Angularidad puede modificarse para ganar tolerancia adicional SI______NO_____

Explica tu respuesta


14. Una zona de tolerancia de ______ es la distancia entre dos planos paralelos, los cuales son también paralelos a un datum.


15. El paralelismo puede aplicarse al eje de dos o más características cuando se desea una relación de paralelismo entre las características.

SI_____ NO____

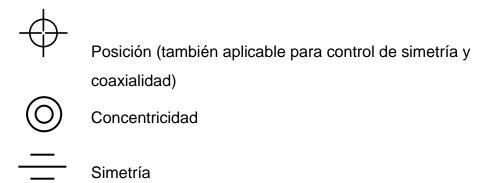
16. Dado el siguiente dibujo, anexa un marco de control de característica para especificar una tolerancia de paralelismo de 0.10 a la superficie tope, relativa a la característica datum A. ¿Se requiere una dimensión básica?

SI NO

- 18. Para el dibujo de la pregunta 17, ¿podría la tolerancia de paralelismo haberse especificado para controlar individualmente elementos de línea en la superficie tope?
 SI_______NO_____

Si es así, dibuja un marco de control de característica para especificarla.

TOLERANCIAS DE LOCALIZACIÓN


APLICACIÓN

La tolerancia de localización incluye Posición, Concentricidad y Simetría y controla lo siguiente:

- Distancia entre centros entre características tales como orificios, ranuras y muescas.
- Localización de características (como las anteriores) como grupo, de características datums tal como planos y superficies cilíndricas.
- Coaxialidad o simetría de características
- Características con distancia entre centros igualmente distribuidas acerca de un eje o plano de dato.

Esta sección está diseñada para que usted pueda:

1. Interpretar y aplicar la tolerancia especificada para:

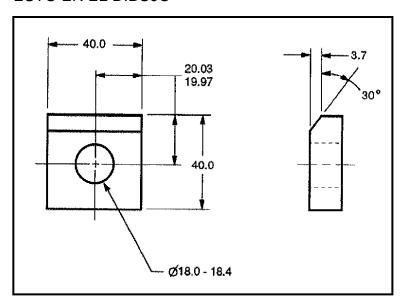
- 2. Interpretar la aplicación de la posición para:
 - Pernos fijos y flotantes
 - Localización de características
 - Zona de tolerancia proyectada
 - Coaxialidad y simetría
 - Acumulación de tolerancias

POSICIÓN

DEFINICIÓN

Es una condición donde:

La precisión de localización para una característica sencilla o un patrón de características de tamaño está definida en referencia a los datums, que están determinados de la relación geométrica y los requerimientos de diseño.

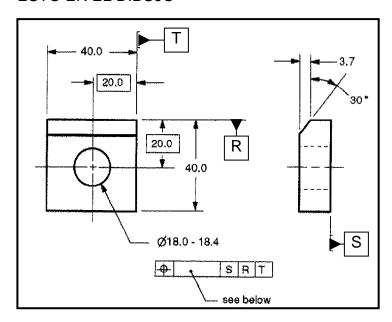

- La tolerancia de posición define una zona dentro de la cual el centro, eje o plano central de una característica de tamaño le es permitido variar con respecto a su posición verdadera (teóricamente exacta).
- Controla orientación (generalmente perpendicularidad o paralelismo) dentro de la misma especificación.

REQUERIMIENTOS

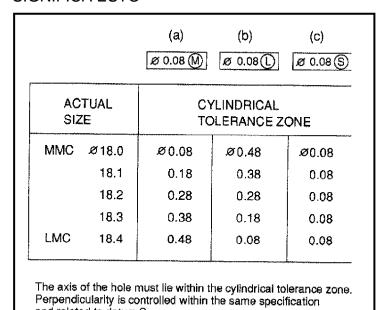
MMC o LMC debe ser especificado en el marco de control de la característica con respecto a tolerancias individuales, MMB, o LMB para datums de referencia, o ambas situaciones, cuando sea requerido, de acuerdo a la regla # 2 de GD&T.

ESPECIFICACIÓN DE POSICIÓN PARA UN ORIFICIO – METODO DE TOLERANCIA Y DIMENSIONAMIENTO POR COORDENADAS

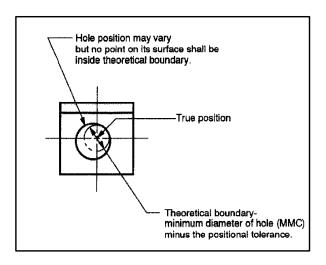
ESTO EN EL DIBUJO



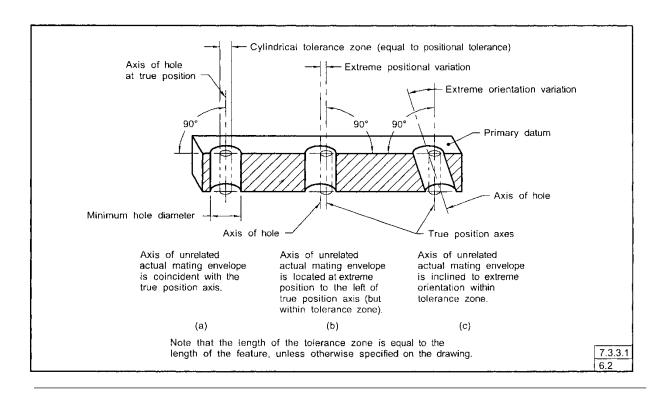
SIGNIFICA ESTO


ESPECIFICANDO POSICIÓN PARA UN ORIFICIO - MÉTODO TOLERANCIA Y DIMENSIONAMIENTO GEOMÉTRICO

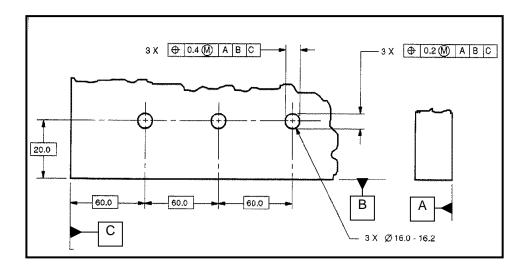
ESTO EN EL DIBUJO



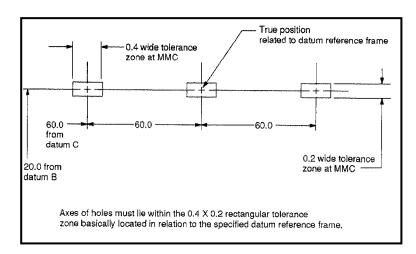
SIGNIFICA ESTO


and related to datum S.

ESPECIFICANDO POSICIÓN - ANÁLISIS DE CARACTERÍSTICA DE TAMAÑO Y ZONA DE TOLERANCIA (MMC)

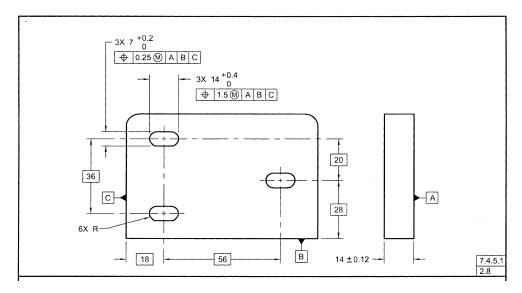


FRONTERA PARA LA SUPERFICIE DE UN ORIFICIO A MMC.

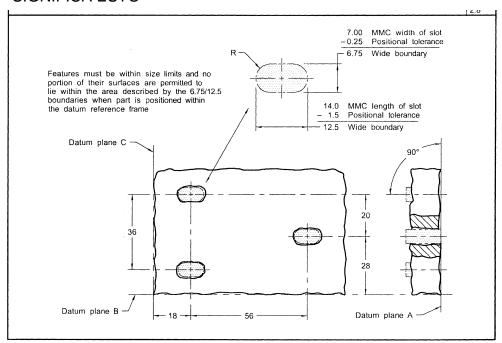


ESPECIFICANDO POSICIÓN - PARA TOLERANCIA BIDIRECCIONAL - MÉTODO DE COORDENADAS

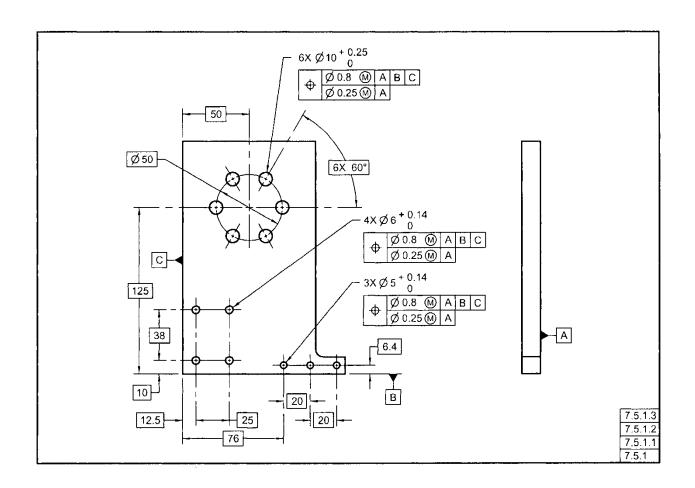
ESTO EN EL DIBUJO



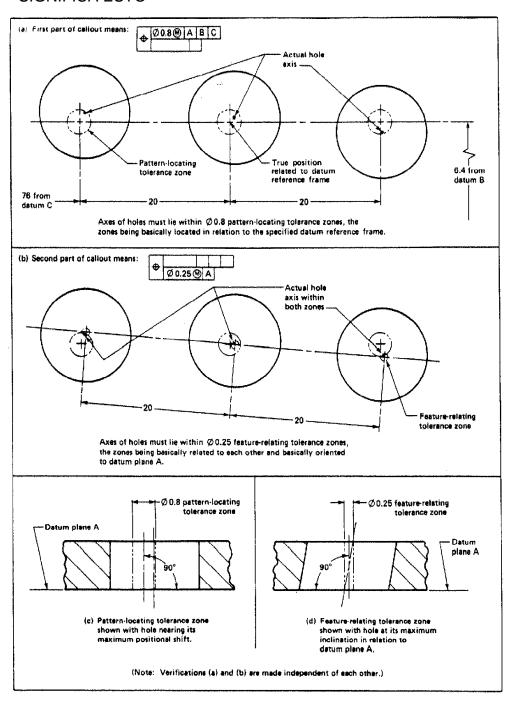
SIGNIFICA ESTO


ESPECIFICANDO POSICIÓN - PARA ORIFICIOS ALARGADOS- MÉTODO DE FRONTERA

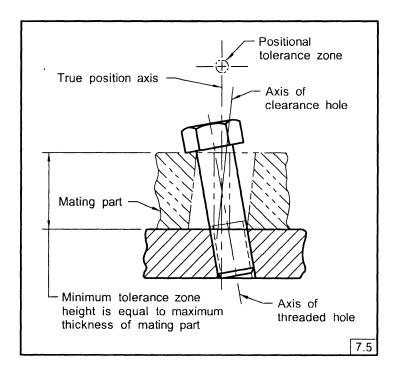
ESTO EN EL DIBUJO


La característica de tamaño debe verificarse primero

SIGNIFICA ESTO

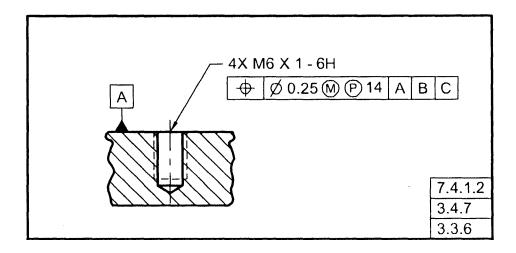

ESPECIFICANDO POSICIÓN - PARA UNA PLANTILLA DE ORIFICIOS POR TOLERANCIA POSICIONAL COMPUESTA

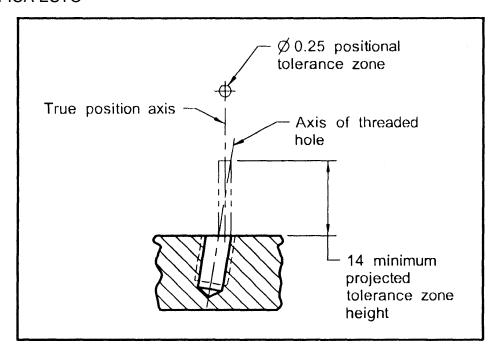
ESTO EN EL DIBUJO



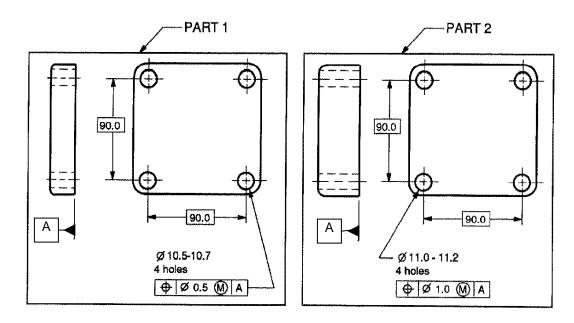
ESPECIFICANDO POSICIÓN - PARA UNA PLANTILLA DE ORIFICIOS POR TOLERANCIA POSICIONALCOMPUESTA.

SIGNIFICA ESTO


ESPECIFICANDO POSICIÓN - ZONA DE TOLERANCIA PROYECTADA


La zona de tolerancia proyectada puede ser usada cuando la variación en la perpendicularidad del agujero roscado o con ajuste a presión, puede causar que el tornillo interfiera con la parte ensamblada

ESPECIFICANDO POSICIÓN - ZONA DE TOLERANCIA PROYECTADA


ESTO EN EL DIBUJO

SIGNIFICA ESTO

ESPECIFICANDO POSICIÓN - CALCULO DE LA TOLERANCIA DE UN TORNILLO FLOTANTE

Use la formula T = H-F para cada parte

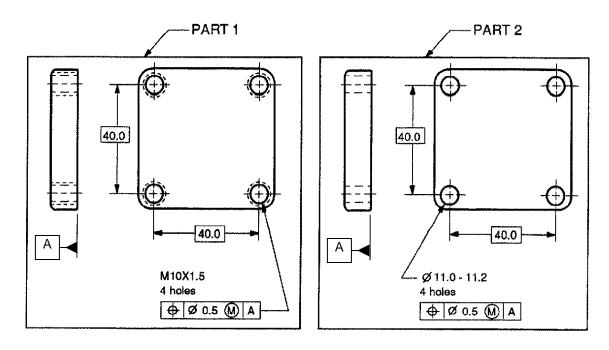
donde:

T = Diámetro de tolerancia de posición

H = Diámetro de mínima holgura del agujero (limite MMC)

F = Diámetro máximo del tornillo (limite MMC)

EJEMPLO


Las partes 1 y 2 se ensamblan juntas con tornillos de 10mm

PARTE 1	PARTE 2
T1 = H1- F1	T2 = H2 - F2
= 10.5 - 10	= 11.0 -10-0
T1 = 0.5	T2 = 1.0

T1 + T2 = 1.5; Es el total de la tolerancia de posición disponible

La tolerancia total puede ser dividida entre las dos partes en forma proporcional o igual

ESPECIFICANDO POSICIÓN - CALCULO DE LA TOLERANCIA DE UN TORNILLO FIJO

Use la fórmula T = H- F para cada parte que contenga holgura en el agujero

donde:

T = Diámetro de la tolerancia de posición

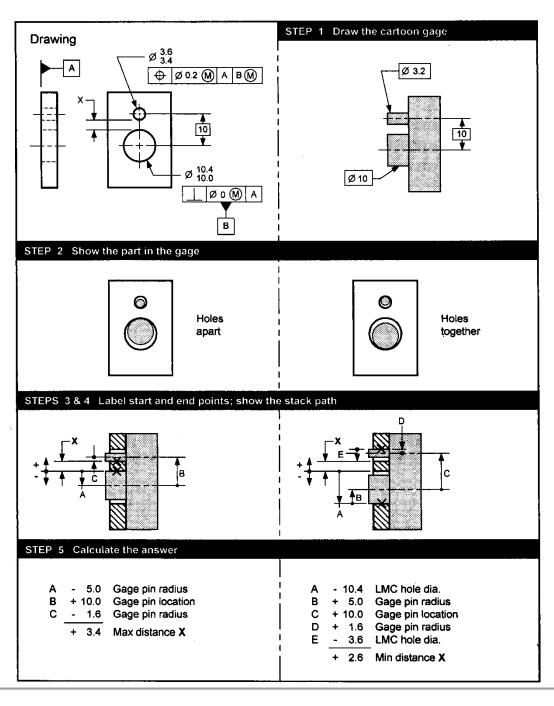
H = Diámetro mínimo de holgura del agujero (límite MMC)

F = Diámetro máximo del tornillo (límite (MMC)

EJEMPLO

Las partes 1 y 2 se ensamblan juntas con tornillos de 10mm

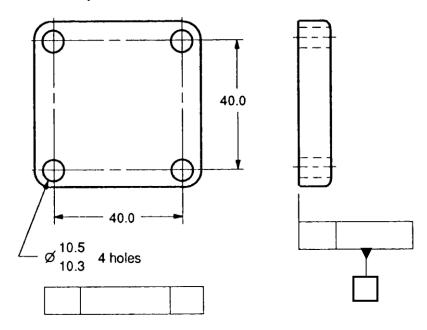
PARTE 2


T2 = H2 - F2

= 11.0 -10-0

T2 = 1.0

T2 = 1.0; Es el total de la tolerancia de posición disponible La tolerancia total puede ser dividida entre las dos partes en forma proporcional o igual

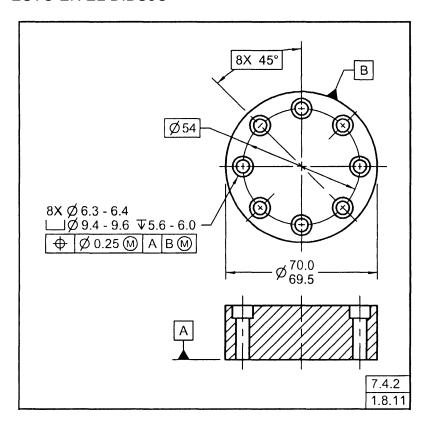

CÁLCULO DE ACUMULACIÓN DE TOLERANCIAS USANDO TOLERANCIAS DE POSICIÓN - MMC

ACTIVIDAD DEL ESTUDIANTE - TOLERANCIAS DE LOCALIZACIÓN

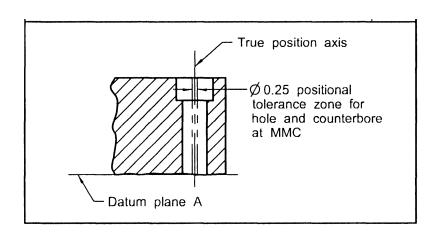
Instrucciones:

Especifica las tolerancias en el siguiente dibujo para lograr los requerimientos de diseño enlistados abajo

Requerimientos de diseño

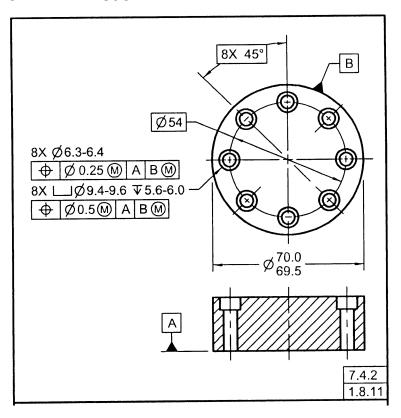

- 1. La superficie de montaje debe ser plana dentro de 0.15, y debe ser identificada como característica datum A.
- 2. Los cuatro agujeros se posicionarán dentro de una tolerancia geométrica de Ø 0.3 RFS relativa a la superficie datum A. Especifica las dimensiones básicas.

PREGUNTAS

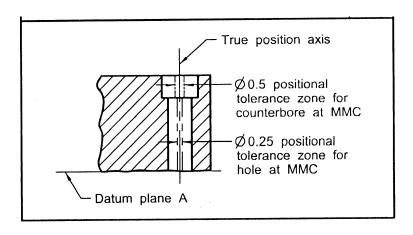

- 1. ¿Se ha establecido una relación de perpendicularidad con la superficie? SI ______ NO _____
- 2. ¿Qué símbolo de condición de material podría usarse para permitir tolerancia geométrica adicional? _____

ESPECIFICANDO POSICIÓN PARA AGUJEROS CON CAJA - MISMA TOLERANCIA Y DATUMS DE REFERENCIA

ESTO EN EL DIBUJO

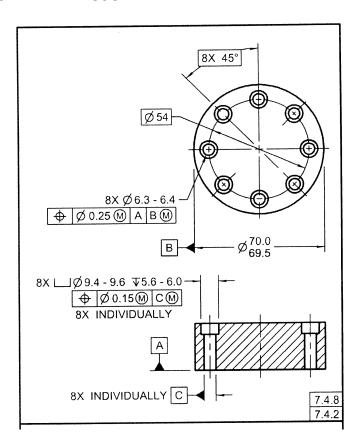


SIGNIFICA ESTO

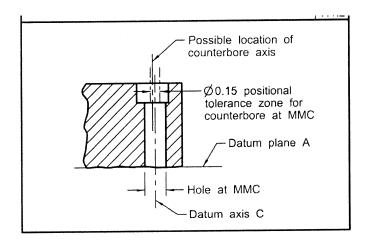


ESPECIFICANDO POSICIÓN PARA AGUJEROS CON CAJA - DIFERENTE TOLERANCIA, MISMOS DATUMS DE REFERENCIA

ESTO EN EL DIBUJO

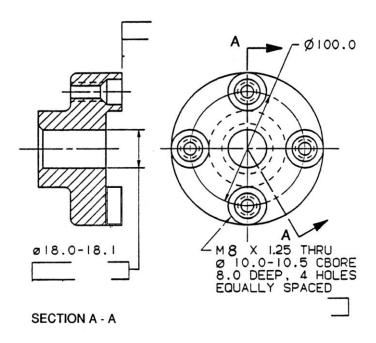


SIGNIFICA ESTO



ESPECIFICANDO POSICIÓN PARA AGUJEROS CON CAJA - DIFERENTE TOLERANCIA Y DATUMS DE REFERENCIA

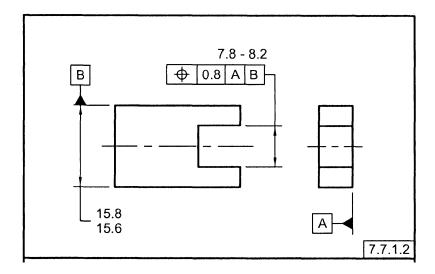
ESTO EN EL DIBUJO


SIGNIFICA ESTO

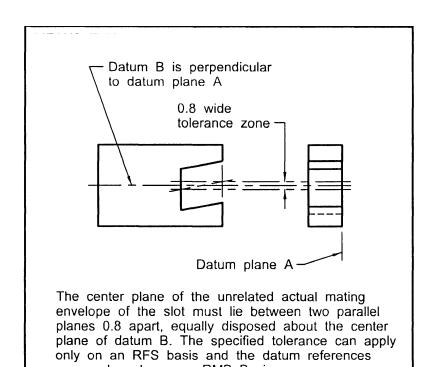
ACTIVIDAD DE APRENDIZAJE - TOLERANCIAS DE LOCALIZACIÓN

Instrucciones:

Especificar las tolerancias en el siguiente dibujo para lograr los requerimientos de diseño enlistados abajo:

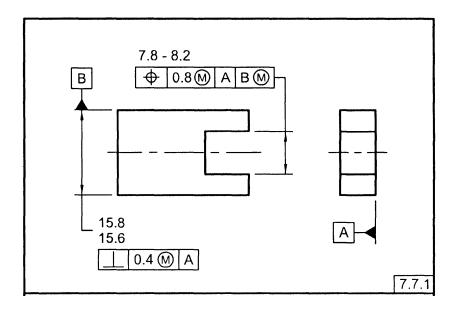


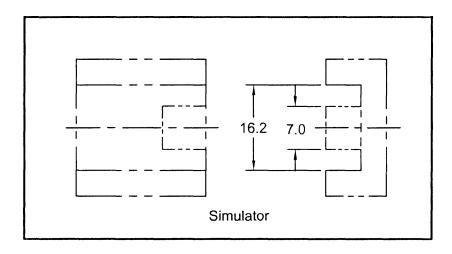
Requerimientos de diseño:


- 1. Las superficies en los cuatro mamelones deben ser planas en el mismo plano dentro de 0.08 y deben ser la característica datum A.
- 2. El agujero central es una característica datum B y debe ser perpendicular a la característica datum A dentro de una tolerancia geométrica a MMC de Ø 0.01
- 3. Los agujeros roscados con caja deben ser calibrados simultáneamente y posicionados dentro de una tolerancia geométrica a MMC de Ø 0.3, relativa a la característica datum A y característica datum B a MMC en esa secuencia

ESPECIFICANDO POSICIÓN PARA CONTROL DE SIMETRIA - RFS

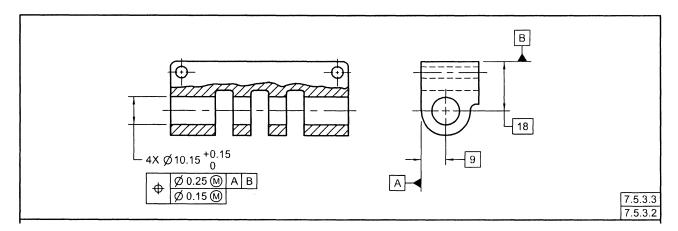
ESTO EN EL DIBUJO


SIGNIFICA ESTO

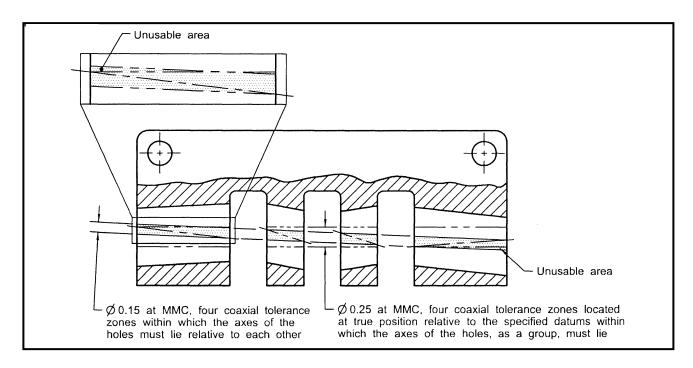

can apply only on an RMB Basis.

ESPECIFICANDO POSICIÓN PARA CONTROL DE SIMETRIA - MMC

ESTO EN EL DIBUJO

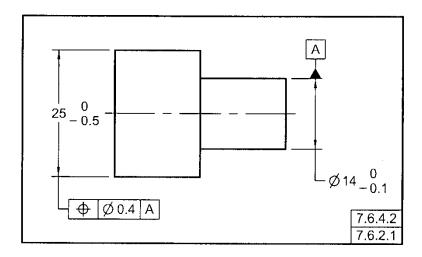


SIGNIFICA ESTO

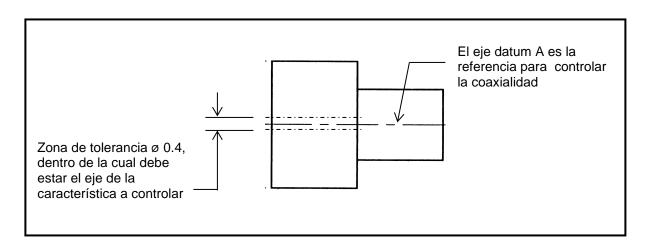


ESPECIFICANDO POSICIÓN PARA ALINEAMIENTO COAXIAL DE AGUJEROS

ESTO EN EL DIBUJO

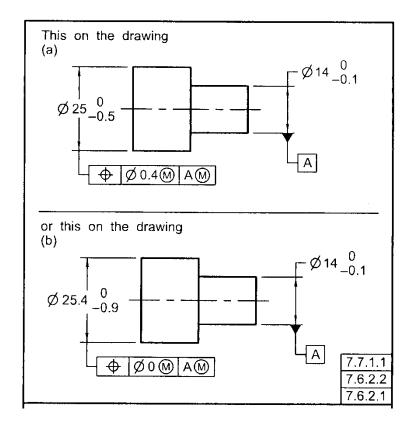


SIGNIFICA ESTO

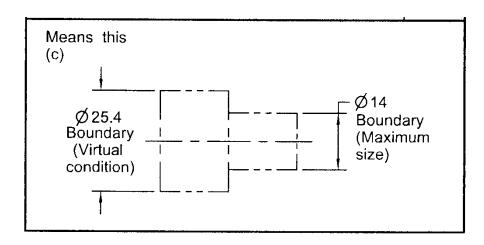


ESPECIFICANDO POSICIÓN PARA COAXIALIDAD DE EJES - RFS

ESTO EN EL DIBUJO

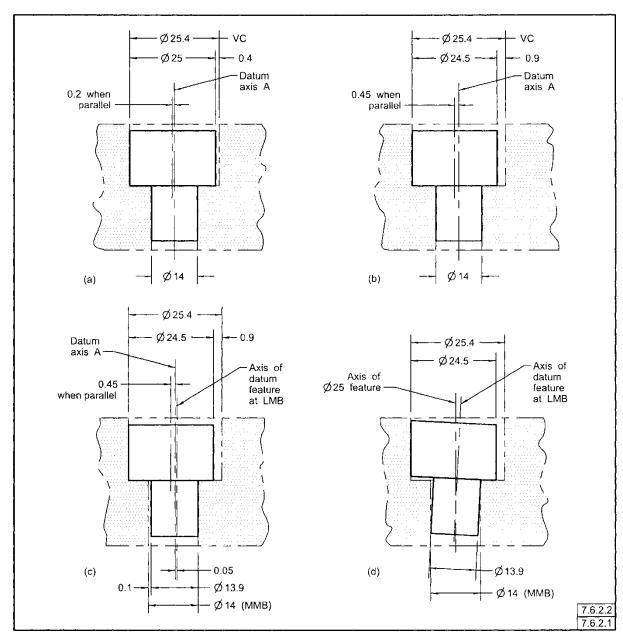


SIGNIFICA ESTO



ESPECIFICANDO POSICIÓN PARA COAXIALIDAD DE EJES - MMC

ESTO EN EL DIBUJO (a) o (b)



SIGNIFICA ESTO

ESPECIFICANDO POSICIÓN PARA COAXIALIDAD DE EJES -MMC

POSIBLES CONDICIONES PARA COAXIALIDAD DE EJES - MMC

CONCENTRICIDAD

DEFINICIÓN:

Es una condición donde:

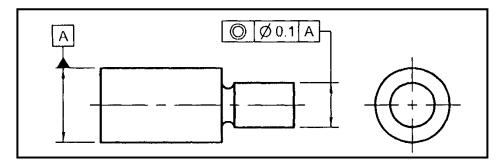
Los puntos medios de todos los elementos diametralmente opuestos de una superficie de revolución son comunes al eje datum de referencia.

- La tolerancia de Concentricidad especifica una zona de tolerancia cilíndrica donde el eje coincide con el eje datum y dentro de la cual todos los puntos medios de los elementos diametralmente opuestos bajo control, deben estar contenidos.
- La tolerancia especificada aplica en base a RFS y el datum de referencia aplican solamente en base a RMB.

REQUERIMIENTOS

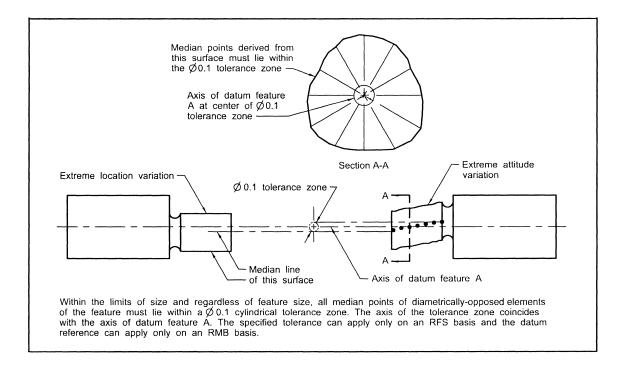
Se requiere del establecimiento y verificación del eje del datum de referencia y de los puntos medios de la característica a controlar, independiente de las condiciones de su superficie.

NOTA:


La tolerancia de Concentricidad está establecida en la norma ANSI Y14.5 – 2009, y aunque puede aparecer en ciertos dibujos de proveedores o clientes, debe tenerse en cuenta que es una condición que resulta difícil y costosa de verificar.

Es conveniente hacer saber que los nuevos requerimientos funcionales, o aún algunos previamente definidos como concéntricos, pueden ser controlados geométricamente, ya sea mediante tolerancia de posición en una base RFS/RMB o mediante el uso de tolerancias de cabeceo.

El propósito de la ilustración en este manual es asegurar la apropiada interpretación de las tolerancias de Concentricidad, cuando sea requerida.


ESPECIFICANDO CONCENTRICIDAD PARA EJES COAXIALES

ESTO EN EL DIBUJO

La ausencia de un modificador indica la aplicación de RFS

SIGNIFICA ESTO

SIMETRIA

DEFINICIÓN:

Es una condición donde:

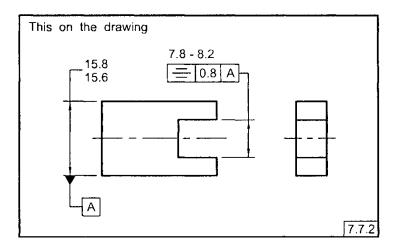
Los puntos medios de todos los elementos opuestos o correspondientes de dos o más superficies de la característica a controlar, coinciden con el eje o plano central de la característica datum de referencia.

- La tolerancia de simetría especifica una zona de tolerancia formada por dos planos paralelos donde los puntos medios de la característica a controlar coinciden con el eje o plano central de la característica datum de referencia.
- La tolerancia especificada aplica en base a RFS y el datum de referencia aplican solamente en base a RMB.

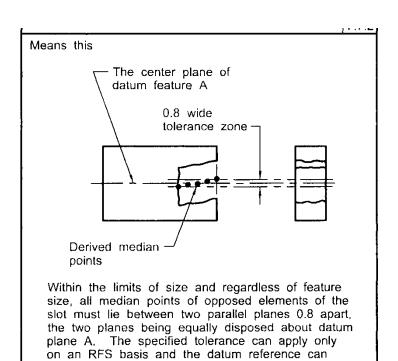
REQUERIMIENTOS

Se requiere del establecimiento y verificación del eje o plano central del datum de referencia y los puntos medios de la característica a controlar, independiente de las condiciones de su superficie.

NOTA:

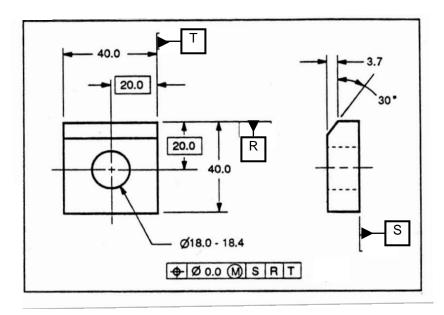

La tolerancia de simetría está establecida en la norma ANSI Y14.5 – 2009, y aunque puede aparecer en ciertos dibujos de proveedores o clientes, debe tenerse en cuenta que es una condición que resulta difícil y costosa de verificar.

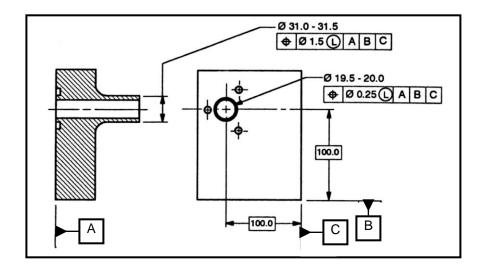
Es conveniente hacer saber que los nuevos requerimientos funcionales, o aún algunos previamente definidos como simétricos, pueden ser controlados geométricamente, ya sea mediante tolerancia de posición en una base RFS/RMB o mediante el uso de tolerancias de perfil.


El propósito de la ilustración en este manual es asegurar la apropiada interpretación de las tolerancias de simetría, cuando sea requerida.

ESPECIFICANDO SIMETRIA PARA SUPERFICIES PLANAS

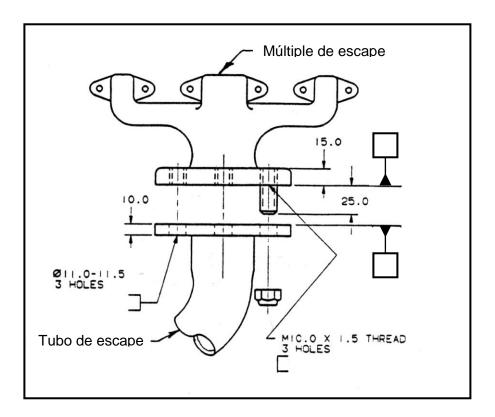
ESTO EN EL DIBUJO.


SIGNIFICA ESTO


apply only on an RFS basis.

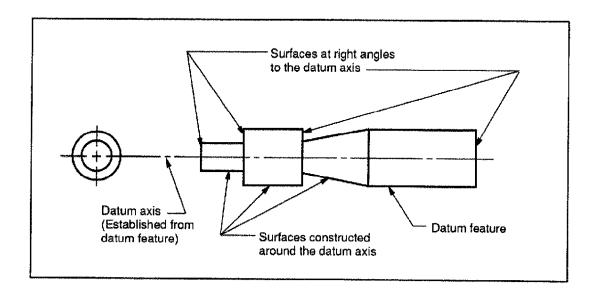
ACTIVIDAD DE APRENDIZAJE - TOLERANCIAS DE LOCALIZACIÓN

1. En el siguiente dibujo, construya una tabla para indicar los valores de la tolerancia de posición para cada tamaño del agujero, la condición virtual y la condición de frontera resultante cuando el orificio está en el límite de tamaño LMC.

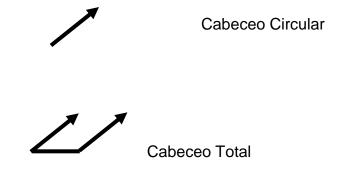

2. Para el siguiente dibujo, calcule el espesor mínimo de pared de la protuberancia tubular-cilíndrica

Para el siguiente dibujo,

- Calcule las tolerancias de posición para cada una de las dos bridas (brida del múltiple de escape y brida del tubo de escape).
- Complete los cuadros de control con los valores de las tolerancias calculadas.
- Nombre las superficies datum de cada brida como datum A.


NOTA: el birlo es de ø 10 mm, y ensambla a presión en la brida del múltiple de escape.

TOLERANCIAS DE CABECEO

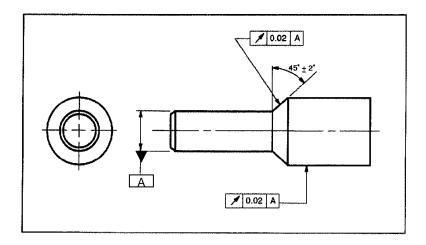

APLICACIÓN

El cabeceo es el componente de tolerancia utilizado para controlar la relación funcional de una o más características de una parte con referencia a un eje datum, como se muestra abajo.

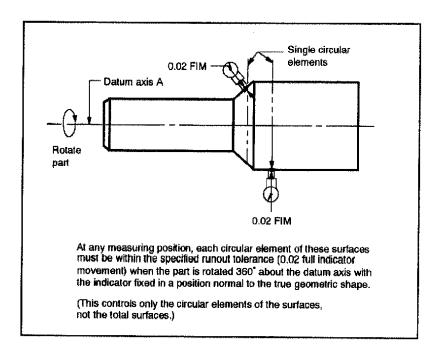
Esta sección está diseñada para permitirle:

1.- Interpretar y aplicar las tolerancias especificadas para:

CABECEO CIRCULAR

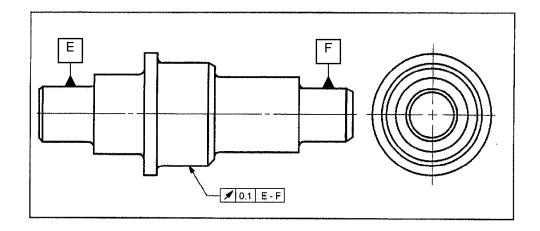

DEFINICION

Cabeceo circular es una condición en donde:

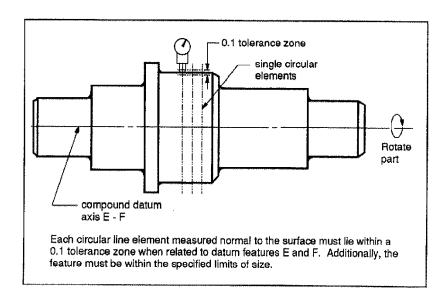

- 1. Elementos circulares sencillos, controlan la variación acumulada de circularidad y coaxialidad para superficies construidas alrededor de ejes datums.
- Elementos circulares sencillos de una superficie plana construida en ángulo recto con respecto a unos ejes datums son controlados de forma similar a los elementos de línea para perpendicularidad o rectitud.
 - La tolerancia es la variación total, y aplica independientemente a cualquier elemento como si la parte estuviera rotando 360° alrededor de los ejes datums.
 - RFS está implícito.

ESPECIFICANDO CABECEO CIRCULAR RELATIVO A UN EJE DATUM.

ESTO EN EL DIBUJO

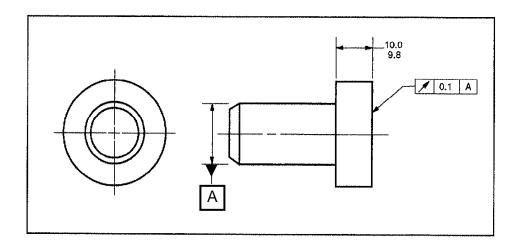


SIGNIFICA ESTO:

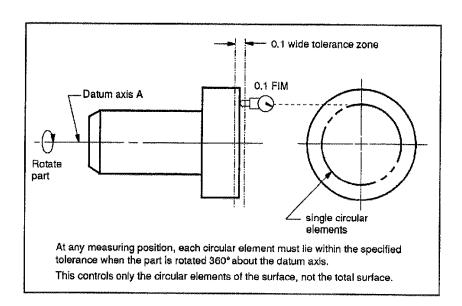


ESPECIFICANDO CABECEO CIRCULAR RELATIVO DOS DATUMS COAXIALES.

ESTO EN EL DIBUJO



SIGNIFICA ESTO:

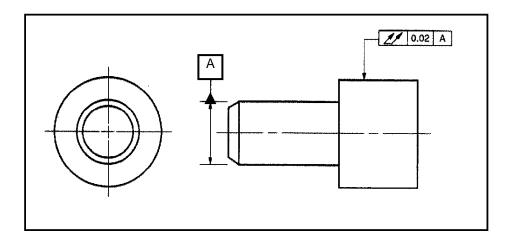


ESPECIFICANDO CABECEO CIRCULAR PARA UNA SUPERFICIE PERPENDICULAR RESPECTO A UN EJE DATUM.

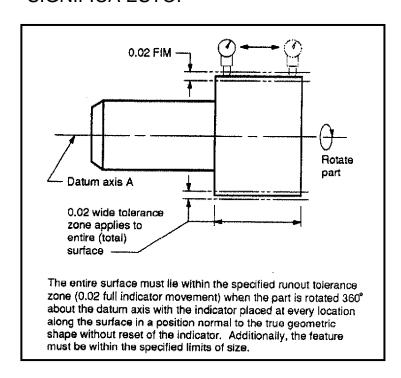
ESTO EN EL DIBUJO

SIGNIFICA ESTO:

CABECEO TOTAL

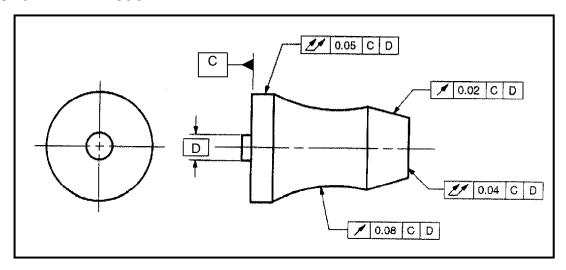

DEFINICION

Cabeceo total es una condición en donde:

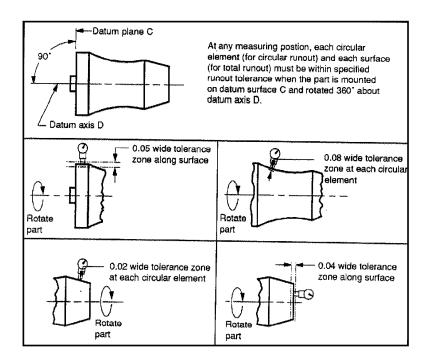

- 1. Todos los elementos de la superficie construida alrededor de un eje datum están simultáneamente controlados por las variaciones acumuladas de:
 - a) Circularidad
 - b) Rectitud
 - c) Coaxialidad
 - d) Angularidad
 - e) Perfil de una superficie
 - f) Acabado cónico
- 2. Todos los elementos de la superficie construida en ángulos rectos, con respecto a unos ejes datum, son simultáneamente controlados por las variaciones acumuladas de:
 - a) Perpendicularidad (para detectar alabeo)
 - b) Planitud (para detectar concavidad o convexidad)
 - La tolerancia es la variación total, y aplica simultáneamente a todas las posiciones de mediciones circulares y de perfil conforme la parte está rotando 360° alrededor de los ejes datum.
 - RFS está implícito.

ESPECIFICANDO CABECEO TOTAL RELATIVO A UN EJE DATUM

ESTO EN EL DIBUJO



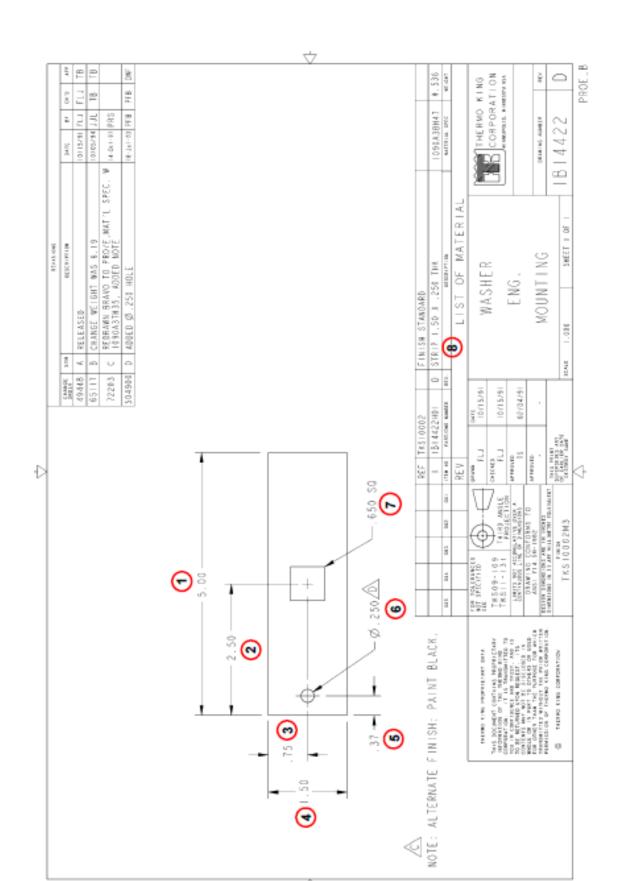
SIGNIFICA ESTO:

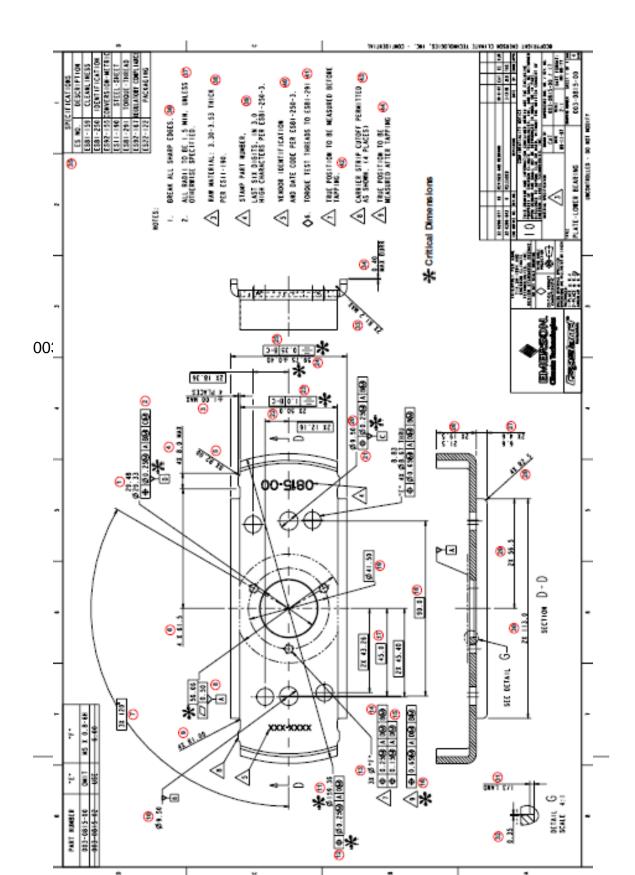


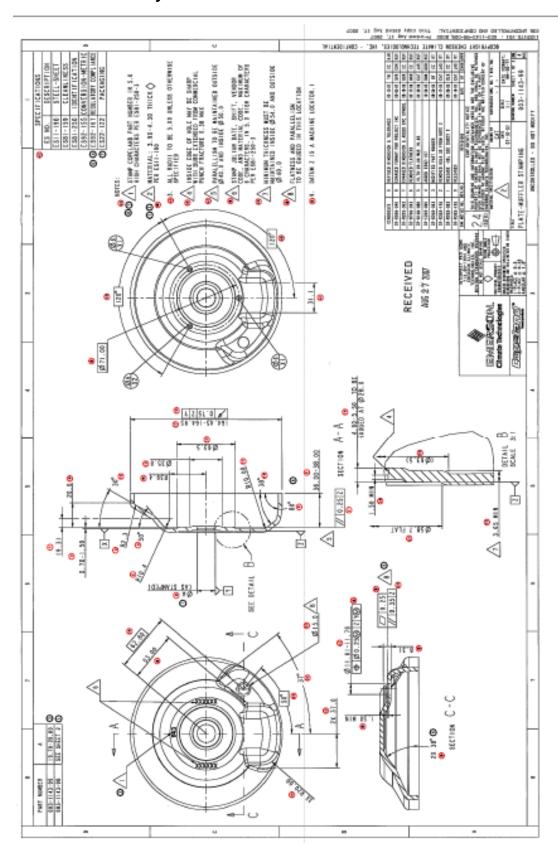
ESPECIFICANDO CABECEO (CIRCULAR Y TOTAL) RELATIVO A DATUMS DE SUPERFICIE Y UN EJE.

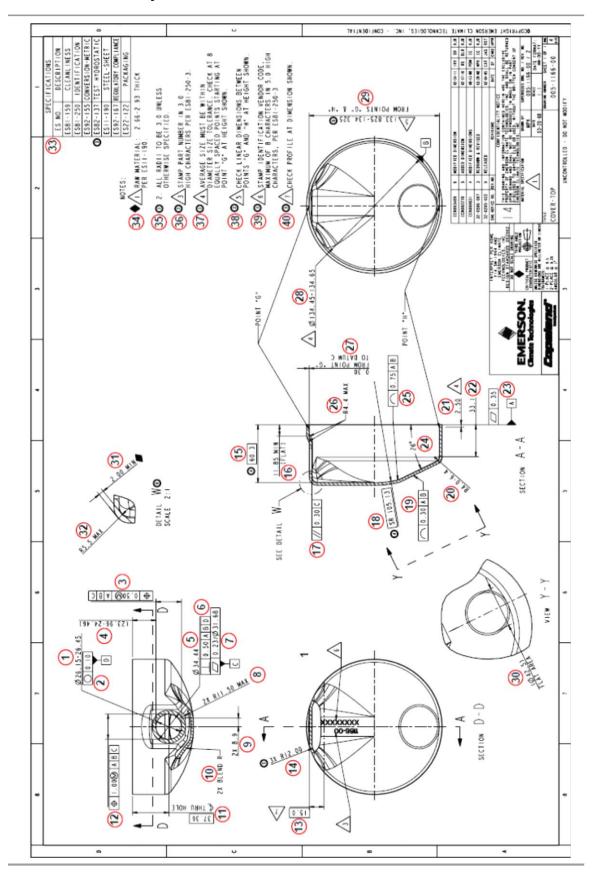
ESTO EN EL DIBUJO

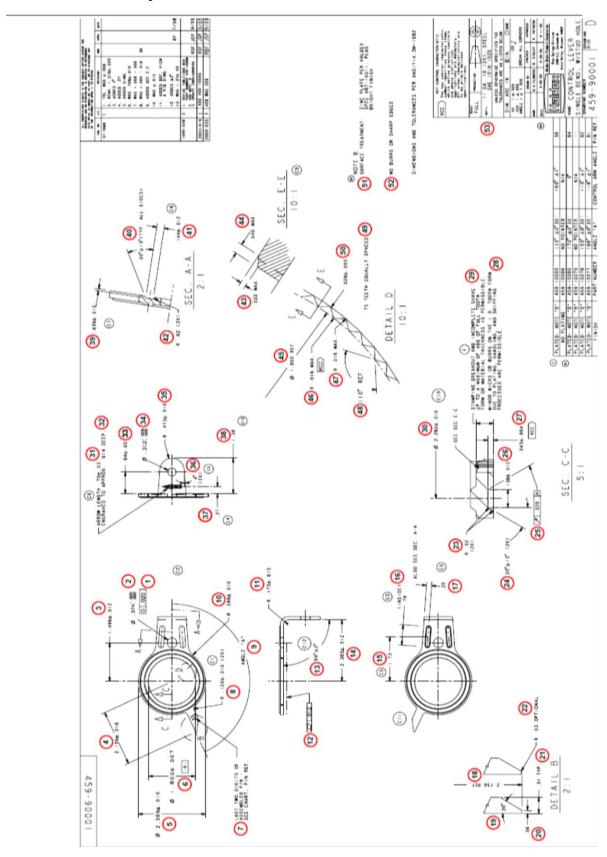
SIGNIFICA ESTO:

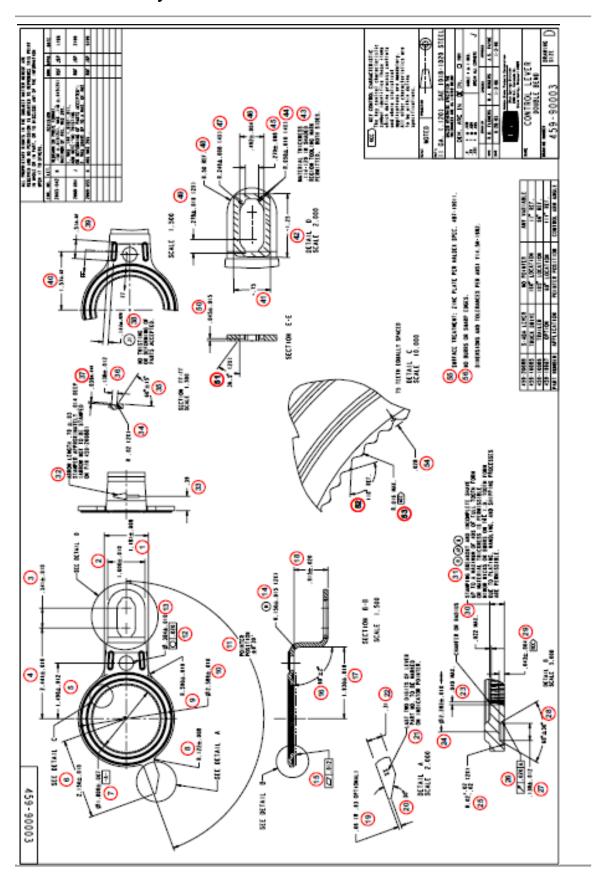


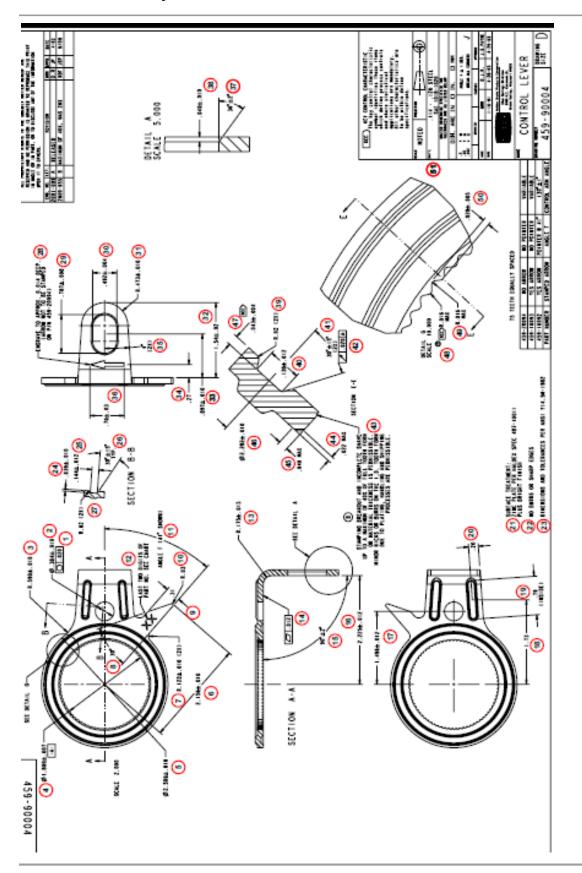

ACTIVIDAD DE APRENDIZAJE - TOLERANCIAS DE CABECEO

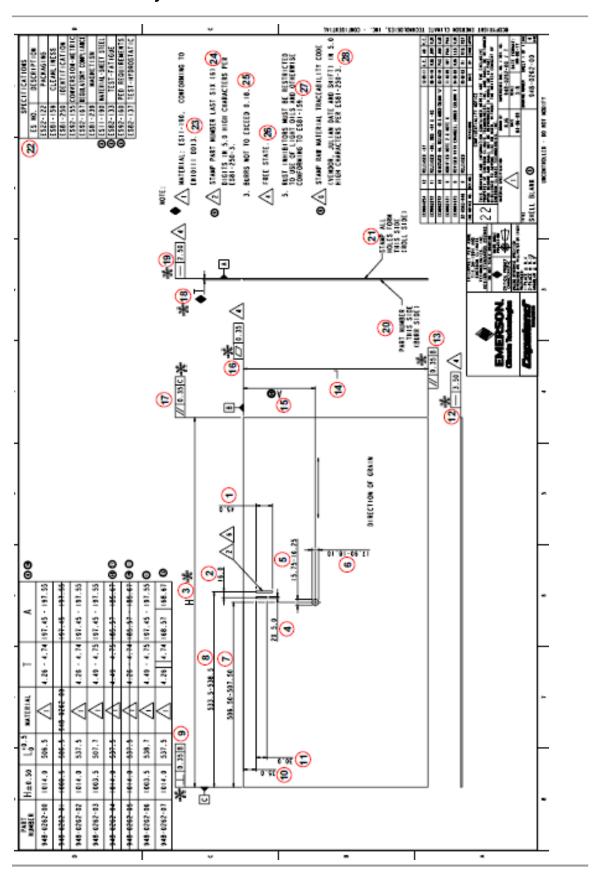

1.	Nombra y dibuja los dos símbolos genéricos característicos para la tolerancia de cabeceo y que requieren de un datum de referencia.							
2.	Subraya la respuesta correcta.							
	El cabeceo es una combinación de controles que pueden incluir:							
	a) Control de elementos circulares de una superficie							
	 b) Control de la variación acumulada de circularidad, rectitud, coaxialidad, angularidad, acabado cónico y perfil de la superficie. 							
	c) Control de variación para perpendicularidad y Planitud.							
	d) Todos los de arriba.							
3.	Cualquier superficie alrededor o perpendicular a un eje datum pueden ser controladas por cabeceo :							
	SINO							
4.	El cabeceo, provee control de elementos circulares sencillos de una superficie.							
5.	El cabeceo, provee un control combinado de los elementos de una superficie.							
6.	Explica la diferencia entre las dos tolerancias de cabeceo:							

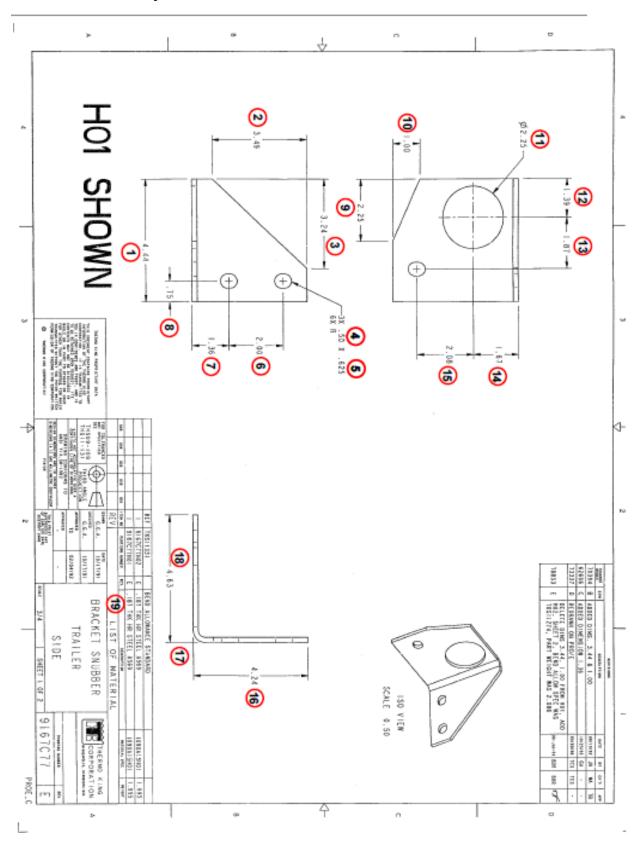

ANEXOS:

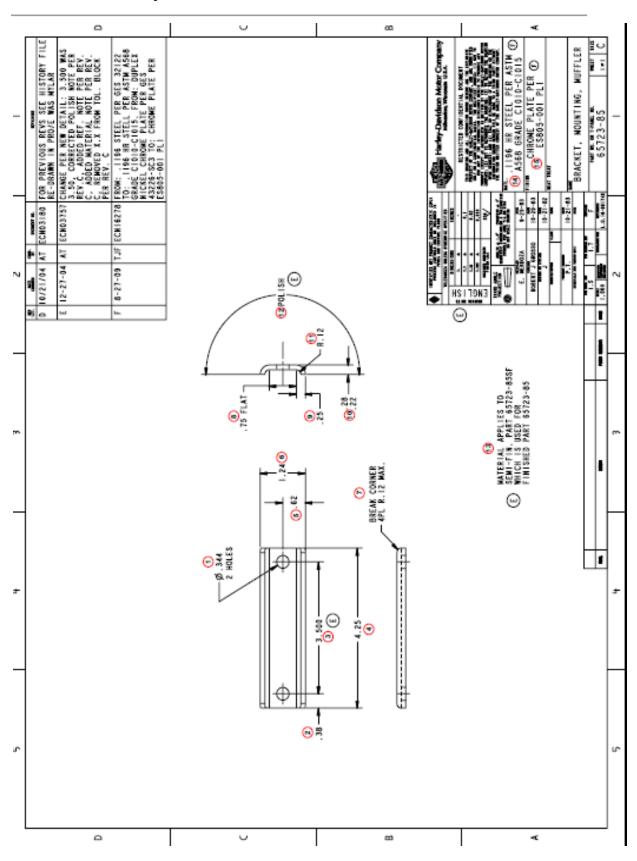

- 1B14422
- 003-0815-00
- 003-1143-99
- 005-1166-00
- 459-90001
- 459-90003
- 459-90004
- 948-0262-03
- 9167C77H01
- 65723-85
- 108857 R
- 298920
- D156377

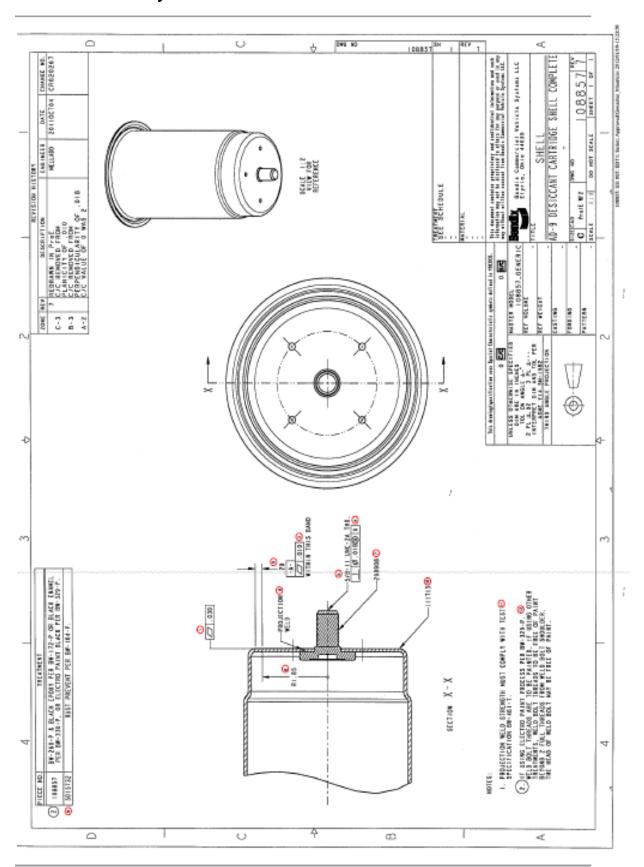


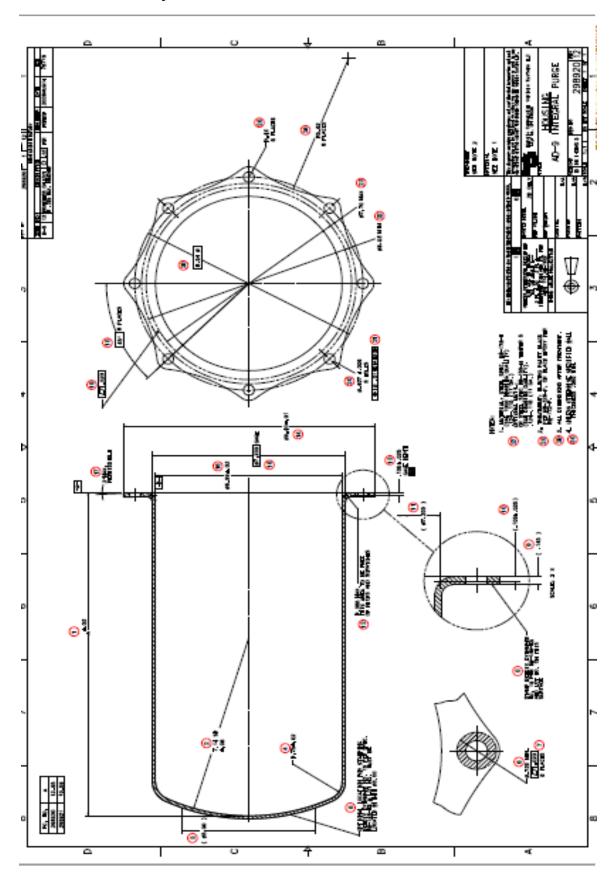


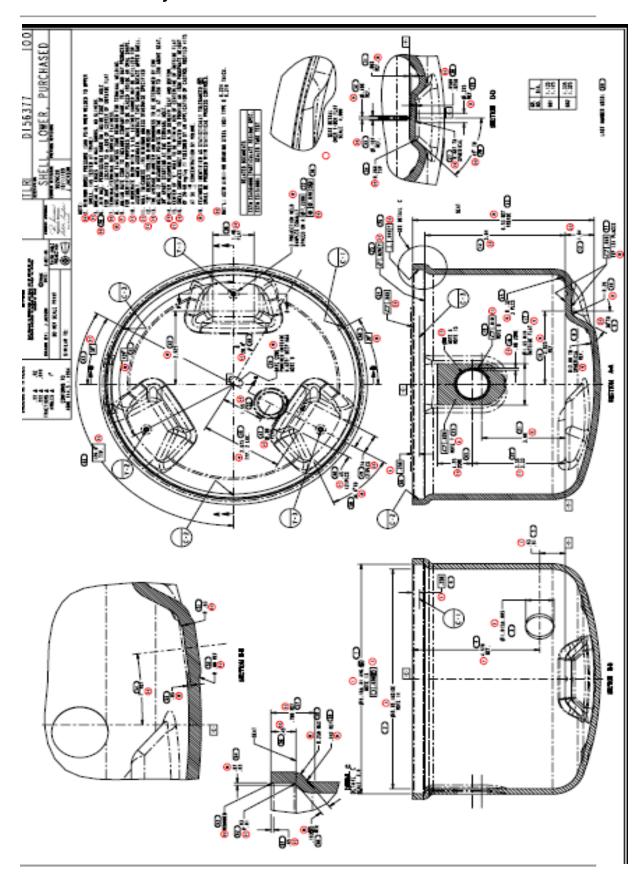












Lectura de Planos y GD&T								